import typing
from .qeventproxy import QEventProxy
from .qgrid import QGrid
from .searchtrees import SearchTree, UnweightedSearchTree
[docs]
class QuantizationJob:
r"""
Quantization job.
Copiable, picklable class for generating all ``QGrids`` which are valid
under a given ``SearchTree`` for a sequence of ``QEventProxies``.
.. container:: example
>>> q_event_a = nauert.PitchedQEvent(250, [0, 1])
>>> q_event_b = nauert.SilentQEvent(500)
>>> q_event_c = nauert.PitchedQEvent(750, [3, 7])
>>> proxy_a = nauert.QEventProxy(q_event_a, 0.25)
>>> proxy_b = nauert.QEventProxy(q_event_b, 0.5)
>>> proxy_c = nauert.QEventProxy(q_event_c, 0.75)
>>> definition = {2: {2: None}, 3: None, 5: None}
>>> search_tree = nauert.UnweightedSearchTree(definition)
>>> job = nauert.QuantizationJob(
... 1, search_tree, [proxy_a, proxy_b, proxy_c])
.. container:: example
``QuantizationJob`` generates ``QGrids`` when called, and stores those
``QGrids`` on its ``q_grids`` attribute, allowing them to be recalled
later, even if pickled:
>>> job()
>>> for q_grid in job.q_grids:
... print(q_grid.rtm_format)
1
(1 (1 1 1 1 1))
(1 (1 1 1))
(1 (1 1))
(1 ((1 (1 1)) (1 (1 1))))
``QuantizationJob`` is intended to be useful in multiprocessing-enabled
environments.
"""
### CLASS VARIABLES ###
__slots__ = ("_job_id", "_q_event_proxies", "_q_grids", "_search_tree")
### INITIALIZER ###
def __init__(
self,
job_id: int = 1,
search_tree: SearchTree | None = None,
q_event_proxies: typing.Sequence[QEventProxy] | None = None,
q_grids: typing.Sequence[QGrid] | None = None,
):
search_tree = search_tree or UnweightedSearchTree()
q_event_proxies = q_event_proxies or []
assert isinstance(search_tree, SearchTree)
assert all(isinstance(x, QEventProxy) for x in q_event_proxies)
self._job_id = job_id
self._search_tree = search_tree
self._q_event_proxies = tuple(q_event_proxies)
self._q_grids: tuple[QGrid, ...]
if q_grids is None:
self._q_grids = ()
else:
assert all(isinstance(x, QGrid) for x in q_grids)
self._q_grids = tuple(q_grids)
### SPECIAL METHODS ###
[docs]
def __call__(self) -> None:
"""
Calls quantization job.
Returns none.
"""
# print('XXX')
# print(format(self.q_event_proxies[0]))
q_grid = QGrid()
q_grid.fit_q_events(self.q_event_proxies)
# print(format(q_grid))
old_q_grids = []
new_q_grids = [q_grid]
while new_q_grids:
q_grid = new_q_grids.pop()
search_results = self.search_tree(q_grid)
# print q_grid.rtm_format
# for x in search_results:
# print '\t', x.rtm_format
new_q_grids.extend(search_results)
old_q_grids.append(q_grid)
# for q_grid in old_q_grids:
# print('\t', q_grid)
# print()
self._q_grids = tuple(old_q_grids)
[docs]
def __eq__(self, argument) -> bool:
"""
Is true when `argument` is a quantization job with job ID, search tree,
q-event proxies and q-grids equal to those of this quantization job.
Otherwise false.
"""
if type(self) is type(argument):
if self.job_id == argument.job_id:
if self.search_tree == argument.search_tree:
if self.q_event_proxies == argument.q_event_proxies:
if self.q_grids == argument.q_grids:
return True
return False
[docs]
def __hash__(self) -> int:
"""
Hashes quantization job.
Required to be explicitly redefined on Python 3 if __eq__ changes.
"""
return super(QuantizationJob, self).__hash__()
[docs]
def __repr__(self):
"""
Gets repr.
"""
return f"{type(self).__name__}(job_id={self.job_id!r}, search_tree={self.search_tree!r}, q_event_proxies={self.q_event_proxies!r}, q_grids={self.q_grids})"
### PUBLIC PROPERTIES ###
@property
def job_id(self) -> int:
"""
The job id of the ``QuantizationJob``.
Only meaningful when the job is processed via multiprocessing,
as the job id is necessary to reconstruct the order of jobs.
"""
return self._job_id
@property
def q_event_proxies(self) -> tuple[QEventProxy, ...]:
r"""
The ``QEventProxies`` the ``QuantizationJob`` was instantiated with.
>>> q_event_a = nauert.PitchedQEvent(250, [0, 1])
>>> q_event_b = nauert.SilentQEvent(500)
>>> q_event_c = nauert.PitchedQEvent(750, [3, 7])
>>> proxy_a = nauert.QEventProxy(q_event_a, 0.25)
>>> proxy_b = nauert.QEventProxy(q_event_b, 0.5)
>>> proxy_c = nauert.QEventProxy(q_event_c, 0.75)
>>> definition = {2: {2: None}, 3: None, 5: None}
>>> search_tree = nauert.UnweightedSearchTree(definition)
>>> job = nauert.QuantizationJob(
... 1, search_tree, [proxy_a, proxy_b, proxy_c])
>>> job()
>>> for q_event_proxy in job.q_event_proxies:
... q_event_proxy
...
QEventProxy(q_event=PitchedQEvent(offset=Offset((250, 1)), pitches=(NamedPitch("c'"), NamedPitch("cs'")), index=None, attachments=()), offset=Offset((1, 4)))
QEventProxy(q_event=SilentQEvent(offset=Offset((500, 1)), index=None, attachments=()), offset=Offset((1, 2)))
QEventProxy(q_event=PitchedQEvent(offset=Offset((750, 1)), pitches=(NamedPitch("ef'"), NamedPitch("g'")), index=None, attachments=()), offset=Offset((3, 4)))
"""
return self._q_event_proxies
@property
def q_grids(self) -> tuple[QGrid, ...]:
r"""
The generated ``QGrids``.
>>> q_event_a = nauert.PitchedQEvent(250, [0, 1])
>>> q_event_b = nauert.SilentQEvent(500)
>>> q_event_c = nauert.PitchedQEvent(750, [3, 7])
>>> proxy_a = nauert.QEventProxy(q_event_a, 0.25)
>>> proxy_b = nauert.QEventProxy(q_event_b, 0.5)
>>> proxy_c = nauert.QEventProxy(q_event_c, 0.75)
>>> definition = {2: {2: None}, 3: None, 5: None}
>>> search_tree = nauert.UnweightedSearchTree(definition)
>>> job = nauert.QuantizationJob(
... 1, search_tree, [proxy_a, proxy_b, proxy_c])
>>> job()
>>> for q_grid in job.q_grids:
... print(q_grid.rtm_format)
1
(1 (1 1 1 1 1))
(1 (1 1 1))
(1 (1 1))
(1 ((1 (1 1)) (1 (1 1))))
"""
return self._q_grids
@property
def search_tree(self) -> SearchTree:
"""
The search tree the ``QuantizationJob`` was instantiated with.
"""
return self._search_tree