setclass

digraph InheritanceGraph { graph [bgcolor=transparent, color=lightsteelblue2, fontname=Arial, fontsize=10, outputorder=edgesfirst, overlap=prism, penwidth=2, rankdir=LR, splines=spline, style="dashed, rounded", truecolor=true]; node [colorscheme=pastel19, fontname=Arial, fontsize=10, height=0, penwidth=2, shape=box, style="filled, rounded", width=0]; edge [color=lightslategrey, penwidth=1]; subgraph "cluster_abjad.setclass" { graph [label="abjad.setclass"]; node [color=1]; "abjad.setclass.SetClass" [URL="../api/abjad/setclass.html#abjad.setclass.SetClass", color=black, fontcolor=white, label="Set\nClass", target=_top]; } subgraph cluster_builtins { graph [label=builtins]; node [color=2]; "builtins.object" [URL="https://docs.python.org/3/library/functions.html#object", label=object, target=_top]; } "builtins.object" -> "abjad.setclass.SetClass"; }


Classes

SetClass

Set-class.

class abjad.setclass.SetClass(cardinality: int = 1, rank: int = 1, lex_rank: bool = False, transposition_only: bool = False)[source]

Set-class.

Makes SG2 set-class from Forte rank:

>>> set_class = abjad.SetClass(4, 29)
>>> print(set_class)
SC(4-29){0, 1, 3, 7}

Makes SG2 set-class from lex rank:

>>> set_class = abjad.SetClass(4, 29, lex_rank=True)
>>> print(set_class)
SC(4-29){0, 3, 6, 9}

Makes SG1 set-class:

>>> set_class = abjad.SetClass(4, 29, transposition_only=True, lex_rank=True)
>>> print(set_class)
SC(4-29){0, 2, 6, 7}

Makes aggregate:

>>> set_class = abjad.SetClass(12, 1, transposition_only=True, lex_rank=True)
>>> print(set_class)
SC(12-1){0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

Lists SG2 tetrachords, pentachords, hexachords by Forte rank:

>>> set_classes = abjad.SetClass.list_set_classes(cardinality=4)
>>> for set_class in set_classes:
...     print(set_class)
... 
SC(4-1){0, 1, 2, 3}
SC(4-2){0, 1, 2, 4}
SC(4-3){0, 1, 3, 4}
SC(4-4){0, 1, 2, 5}
SC(4-5){0, 1, 2, 6}
SC(4-6){0, 1, 2, 7}
SC(4-7){0, 1, 4, 5}
SC(4-8){0, 1, 5, 6}
SC(4-9){0, 1, 6, 7}
SC(4-10){0, 2, 3, 5}
SC(4-11){0, 1, 3, 5}
SC(4-12){0, 2, 3, 6}
SC(4-13){0, 1, 3, 6}
SC(4-14){0, 2, 3, 7}
SC(4-15){0, 1, 4, 6}
SC(4-16){0, 1, 5, 7}
SC(4-17){0, 3, 4, 7}
SC(4-18){0, 1, 4, 7}
SC(4-19){0, 1, 4, 8}
SC(4-20){0, 1, 5, 8}
SC(4-21){0, 2, 4, 6}
SC(4-22){0, 2, 4, 7}
SC(4-23){0, 2, 5, 7}
SC(4-24){0, 2, 4, 8}
SC(4-25){0, 2, 6, 8}
SC(4-26){0, 3, 5, 8}
SC(4-27){0, 2, 5, 8}
SC(4-28){0, 3, 6, 9}
SC(4-29){0, 1, 3, 7}
>>> set_classes = abjad.SetClass.list_set_classes(cardinality=5)
>>> for set_class in set_classes:
...     print(set_class)
... 
SC(5-1){0, 1, 2, 3, 4}
SC(5-2){0, 1, 2, 3, 5}
SC(5-3){0, 1, 2, 4, 5}
SC(5-4){0, 1, 2, 3, 6}
SC(5-5){0, 1, 2, 3, 7}
SC(5-6){0, 1, 2, 5, 6}
SC(5-7){0, 1, 2, 6, 7}
SC(5-8){0, 2, 3, 4, 6}
SC(5-9){0, 1, 2, 4, 6}
SC(5-10){0, 1, 3, 4, 6}
SC(5-11){0, 2, 3, 4, 7}
SC(5-12){0, 1, 3, 5, 6}
SC(5-13){0, 1, 2, 4, 8}
SC(5-14){0, 1, 2, 5, 7}
SC(5-15){0, 1, 2, 6, 8}
SC(5-16){0, 1, 3, 4, 7}
SC(5-17){0, 1, 3, 4, 8}
SC(5-18){0, 1, 4, 5, 7}
SC(5-19){0, 1, 3, 6, 7}
SC(5-20){0, 1, 3, 7, 8}
SC(5-21){0, 1, 4, 5, 8}
SC(5-22){0, 1, 4, 7, 8}
SC(5-23){0, 2, 3, 5, 7}
SC(5-24){0, 1, 3, 5, 7}
SC(5-25){0, 2, 3, 5, 8}
SC(5-26){0, 2, 4, 5, 8}
SC(5-27){0, 1, 3, 5, 8}
SC(5-28){0, 2, 3, 6, 8}
SC(5-29){0, 1, 3, 6, 8}
SC(5-30){0, 1, 4, 6, 8}
SC(5-31){0, 1, 3, 6, 9}
SC(5-32){0, 1, 4, 6, 9}
SC(5-33){0, 2, 4, 6, 8}
SC(5-34){0, 2, 4, 6, 9}
SC(5-35){0, 2, 4, 7, 9}
SC(5-36){0, 1, 2, 4, 7}
SC(5-37){0, 3, 4, 5, 8}
SC(5-38){0, 1, 2, 5, 8}
>>> set_classes = abjad.SetClass.list_set_classes(cardinality=6)
>>> for set_class in set_classes:
...     print(set_class)
... 
SC(6-1){0, 1, 2, 3, 4, 5}
SC(6-2){0, 1, 2, 3, 4, 6}
SC(6-3){0, 1, 2, 3, 5, 6}
SC(6-4){0, 1, 2, 4, 5, 6}
SC(6-5){0, 1, 2, 3, 6, 7}
SC(6-6){0, 1, 2, 5, 6, 7}
SC(6-7){0, 1, 2, 6, 7, 8}
SC(6-8){0, 2, 3, 4, 5, 7}
SC(6-9){0, 1, 2, 3, 5, 7}
SC(6-10){0, 1, 3, 4, 5, 7}
SC(6-11){0, 1, 2, 4, 5, 7}
SC(6-12){0, 1, 2, 4, 6, 7}
SC(6-13){0, 1, 3, 4, 6, 7}
SC(6-14){0, 1, 3, 4, 5, 8}
SC(6-15){0, 1, 2, 4, 5, 8}
SC(6-16){0, 1, 4, 5, 6, 8}
SC(6-17){0, 1, 2, 4, 7, 8}
SC(6-18){0, 1, 2, 5, 7, 8}
SC(6-19){0, 1, 3, 4, 7, 8}
SC(6-20){0, 1, 4, 5, 8, 9}
SC(6-21){0, 2, 3, 4, 6, 8}
SC(6-22){0, 1, 2, 4, 6, 8}
SC(6-23){0, 2, 3, 5, 6, 8}
SC(6-24){0, 1, 3, 4, 6, 8}
SC(6-25){0, 1, 3, 5, 6, 8}
SC(6-26){0, 1, 3, 5, 7, 8}
SC(6-27){0, 1, 3, 4, 6, 9}
SC(6-28){0, 1, 3, 5, 6, 9}
SC(6-29){0, 1, 3, 6, 8, 9}
SC(6-30){0, 1, 3, 6, 7, 9}
SC(6-31){0, 1, 3, 5, 8, 9}
SC(6-32){0, 2, 4, 5, 7, 9}
SC(6-33){0, 2, 3, 5, 7, 9}
SC(6-34){0, 1, 3, 5, 7, 9}
SC(6-35){0, 2, 4, 6, 8, 10}
SC(6-36){0, 1, 2, 3, 4, 7}
SC(6-37){0, 1, 2, 3, 4, 8}
SC(6-38){0, 1, 2, 3, 7, 8}
SC(6-39){0, 2, 3, 4, 5, 8}
SC(6-40){0, 1, 2, 3, 5, 8}
SC(6-41){0, 1, 2, 3, 6, 8}
SC(6-42){0, 1, 2, 3, 6, 9}
SC(6-43){0, 1, 2, 5, 6, 8}
SC(6-44){0, 1, 2, 5, 6, 9}
SC(6-45){0, 2, 3, 4, 6, 9}
SC(6-46){0, 1, 2, 4, 6, 9}
SC(6-47){0, 1, 2, 4, 7, 9}
SC(6-48){0, 1, 2, 5, 7, 9}
SC(6-49){0, 1, 3, 4, 7, 9}
SC(6-50){0, 1, 4, 6, 7, 9}

There are 352 SG1 set-classes and 224 SG2 set-classes.

Gets cardinality of SG2 set-class with Forte rank:

>>> set_class = abjad.SetClass(4, 29)
>>> print(set_class)
SC(4-29){0, 1, 3, 7}
>>> set_class.cardinality
4

Gets cardinality of SG2 set-class with lex rank:

>>> set_class = abjad.SetClass(
...     4,
...     29,
...     lex_rank=True,
... )
>>> print(set_class)
SC(4-29){0, 3, 6, 9}
>>> set_class.cardinality
4

Gets cardinality of SG1 set-class:

>>> set_class = abjad.SetClass(
...     4,
...     29,
...     lex_rank=True,
...     transposition_only=True,
... )
>>> print(set_class)
SC(4-29){0, 2, 6, 7}
>>> set_class.cardinality
4

Initializes SG2 set-class with Forte rank:

>>> set_class = abjad.SetClass(4, 29)
>>> print(set_class)
SC(4-29){0, 1, 3, 7}

Initializes SG2 set-class with lex rank:

>>> set_class = abjad.SetClass(
...     4,
...     29,
...     lex_rank=True,
... )
>>> print(set_class)
SC(4-29){0, 3, 6, 9}

Initializes SG1 (transposition-only) set-class:

>>> set_class = abjad.SetClass(
...     4,
...     29,
...     lex_rank=True,
...     transposition_only=True,
... )
>>> print(set_class)
SC(4-29){0, 2, 6, 7}

Attributes Summary

__eq__

Return self==value.

__hash__

Return hash(self).

__post_init__

__repr__

Return repr(self).

__str__

Gets string representation.

from_pitches

Makes set-class from pitches.

is_inversion_equivalent

Is true when set-class is inversion-equivalent.

list_set_classes

List set-classes.

prime_form

Gets prime form.


Special methods

overridden __eq__(other)

Return self==value.

overridden __hash__()

Return hash(self).

__post_init__()[source]
overridden __repr__()

Return repr(self).

overridden __str__() str[source]

Gets string representation.

Gets string of SG2 set-class with Forte rank:

>>> set_class = abjad.SetClass(4, 29)
>>> print(set_class)
SC(4-29){0, 1, 3, 7}

Gets string of SG2 set-class with lex rank:

>>> set_class = abjad.SetClass(
...     4,
...     29,
...     lex_rank=True,
... )
>>> print(set_class)
SC(4-29){0, 3, 6, 9}

Gets string of SG1 set-class:

>>> set_class = abjad.SetClass(
...     4,
...     29,
...     lex_rank=True,
...     transposition_only=True,
... )
>>> print(set_class)
SC(4-29){0, 2, 6, 7}

Class & static methods

static from_pitches(pitches, lex_rank=None, transposition_only=None)[source]

Makes set-class from pitches.

>>> pc_set = abjad.PitchClassSet([9, 0, 3, 5, 6])
>>> set_class = abjad.SetClass.from_pitches(pc_set)
>>> print(set_class)
SC(5-31){0, 1, 3, 6, 9}
>>> pc_set = abjad.PitchClassSet([9, 0, 3, 5, 6])
>>> set_class = abjad.SetClass.from_pitches(
...     pc_set,
...     lex_rank=True,
... )
>>> print(set_class)
SC(5-22){0, 1, 3, 6, 9}
>>> pc_set = abjad.PitchClassSet([9, 0, 3, 5, 6])
>>> set_class = abjad.SetClass.from_pitches(
...     pc_set,
...     transposition_only=True,
... )
>>> print(set_class)
SC(5-44){0, 2, 3, 6, 9}
>>> pc_set = abjad.PitchClassSet([9, 11, 1, 2, 4, 6])
>>> set_class = abjad.SetClass.from_pitches(pc_set)
>>> print(set_class)
SC(6-32){0, 2, 4, 5, 7, 9}
>>> pc_set = abjad.PitchClassSet([9, 11, 1, 2, 4, 6])
>>> set_class = abjad.SetClass.from_pitches(
...     pc_set,
...     lex_rank=True,
... )
>>> print(set_class)
SC(6-49){0, 2, 4, 5, 7, 9}
>>> pc_set = abjad.PitchClassSet([9, 11, 1, 2, 4, 6])
>>> set_class = abjad.SetClass.from_pitches(
...     pc_set,
...     transposition_only=True,
... )
>>> print(set_class)
SC(6-70){0, 2, 4, 5, 7, 9}
>>> pc_set = abjad.PitchClassSet([11, 0, 5, 6])
>>> set_class = abjad.SetClass.from_pitches(pc_set)
>>> print(set_class)
SC(4-9){0, 1, 6, 7}
>>> pc_set = abjad.PitchClassSet([11, 0, 5, 6])
>>> set_class = abjad.SetClass.from_pitches(
...     pc_set,
...     lex_rank=True,
... )
>>> print(set_class)
SC(4-17){0, 1, 6, 7}
>>> pc_set = abjad.PitchClassSet([11, 0, 5, 6])
>>> set_class = abjad.SetClass.from_pitches(
...     pc_set,
...     transposition_only=True,
... )
>>> print(set_class)
SC(4-17){0, 1, 6, 7}
>>> pc_set = abjad.PitchClassSet([0, 4, 7])
>>> set_class = abjad.SetClass.from_pitches(pc_set)
>>> print(set_class)
SC(3-11){0, 3, 7}
>>> pc_set = abjad.PitchClassSet([0, 4, 7])
>>> set_class = abjad.SetClass.from_pitches(
...     pc_set,
...     lex_rank=True,
... )
>>> print(set_class)
SC(3-11){0, 3, 7}
>>> pc_set = abjad.PitchClassSet([0, 4, 7])
>>> set_class = abjad.SetClass.from_pitches(
...     pc_set,
...     transposition_only=True,
... )
>>> print(set_class)
SC(3-17){0, 4, 7}

Returns new set-class.

static list_set_classes(cardinality=None, lex_rank=None, transposition_only=None)[source]

List set-classes.

Lists SG2 set-classes of cardinality 4 with Forte rank:

>>> set_classes = abjad.SetClass.list_set_classes(
...     cardinality=4,
... )
>>> for set_class in set_classes:
...     print(set_class)
... 
SC(4-1){0, 1, 2, 3}
SC(4-2){0, 1, 2, 4}
SC(4-3){0, 1, 3, 4}
SC(4-4){0, 1, 2, 5}
SC(4-5){0, 1, 2, 6}
SC(4-6){0, 1, 2, 7}
SC(4-7){0, 1, 4, 5}
SC(4-8){0, 1, 5, 6}
SC(4-9){0, 1, 6, 7}
SC(4-10){0, 2, 3, 5}
SC(4-11){0, 1, 3, 5}
SC(4-12){0, 2, 3, 6}
SC(4-13){0, 1, 3, 6}
SC(4-14){0, 2, 3, 7}
SC(4-15){0, 1, 4, 6}
SC(4-16){0, 1, 5, 7}
SC(4-17){0, 3, 4, 7}
SC(4-18){0, 1, 4, 7}
SC(4-19){0, 1, 4, 8}
SC(4-20){0, 1, 5, 8}
SC(4-21){0, 2, 4, 6}
SC(4-22){0, 2, 4, 7}
SC(4-23){0, 2, 5, 7}
SC(4-24){0, 2, 4, 8}
SC(4-25){0, 2, 6, 8}
SC(4-26){0, 3, 5, 8}
SC(4-27){0, 2, 5, 8}
SC(4-28){0, 3, 6, 9}
SC(4-29){0, 1, 3, 7}

Lists SG2 set-classes of cardinality 4 with lex rank:

>>> set_classes = abjad.SetClass.list_set_classes(
...     cardinality=4,
...     lex_rank=True,
... )
>>> for set_class in set_classes:
...     print(set_class)
... 
SC(4-1){0, 1, 2, 3}
SC(4-2){0, 1, 2, 4}
SC(4-3){0, 1, 2, 5}
SC(4-4){0, 1, 2, 6}
SC(4-5){0, 1, 2, 7}
SC(4-6){0, 1, 3, 4}
SC(4-7){0, 1, 3, 5}
SC(4-8){0, 1, 3, 6}
SC(4-9){0, 1, 3, 7}
SC(4-10){0, 1, 4, 5}
SC(4-11){0, 1, 4, 6}
SC(4-12){0, 1, 4, 7}
SC(4-13){0, 1, 4, 8}
SC(4-14){0, 1, 5, 6}
SC(4-15){0, 1, 5, 7}
SC(4-16){0, 1, 5, 8}
SC(4-17){0, 1, 6, 7}
SC(4-18){0, 2, 3, 5}
SC(4-19){0, 2, 3, 6}
SC(4-20){0, 2, 3, 7}
SC(4-21){0, 2, 4, 6}
SC(4-22){0, 2, 4, 7}
SC(4-23){0, 2, 4, 8}
SC(4-24){0, 2, 5, 7}
SC(4-25){0, 2, 5, 8}
SC(4-26){0, 2, 6, 8}
SC(4-27){0, 3, 4, 7}
SC(4-28){0, 3, 5, 8}
SC(4-29){0, 3, 6, 9}

Lists SG1 set-classes of cardinality 4:

>>> set_classes = abjad.SetClass.list_set_classes(
...     cardinality=4,
...     transposition_only=True,
... )
>>> for set_class in set_classes:
...     print(set_class)
... 
SC(4-1){0, 1, 2, 3}
SC(4-2){0, 1, 2, 4}
SC(4-3){0, 1, 2, 5}
SC(4-4){0, 1, 2, 6}
SC(4-5){0, 1, 2, 7}
SC(4-6){0, 1, 3, 4}
SC(4-7){0, 1, 3, 5}
SC(4-8){0, 1, 3, 6}
SC(4-9){0, 1, 3, 7}
SC(4-10){0, 1, 4, 5}
SC(4-11){0, 1, 4, 6}
SC(4-12){0, 1, 4, 7}
SC(4-13){0, 1, 4, 8}
SC(4-14){0, 1, 5, 6}
SC(4-15){0, 1, 5, 7}
SC(4-16){0, 1, 5, 8}
SC(4-17){0, 1, 6, 7}
SC(4-18){0, 2, 3, 4}
SC(4-19){0, 2, 3, 5}
SC(4-20){0, 2, 3, 6}
SC(4-21){0, 2, 3, 7}
SC(4-22){0, 2, 4, 5}
SC(4-23){0, 2, 4, 6}
SC(4-24){0, 2, 4, 7}
SC(4-25){0, 2, 4, 8}
SC(4-26){0, 2, 5, 6}
SC(4-27){0, 2, 5, 7}
SC(4-28){0, 2, 5, 8}
SC(4-29){0, 2, 6, 7}
SC(4-30){0, 2, 6, 8}
SC(4-31){0, 3, 4, 5}
SC(4-32){0, 3, 4, 6}
SC(4-33){0, 3, 4, 7}
SC(4-34){0, 3, 4, 8}
SC(4-35){0, 3, 5, 6}
SC(4-36){0, 3, 5, 7}
SC(4-37){0, 3, 5, 8}
SC(4-38){0, 3, 6, 7}
SC(4-39){0, 3, 6, 8}
SC(4-40){0, 3, 6, 9}
SC(4-41){0, 4, 5, 6}
SC(4-42){0, 4, 5, 7}
SC(4-43){0, 4, 6, 7}

Returns list of set-classes.


Read-only properties

is_inversion_equivalent

Is true when set-class is inversion-equivalent.

Is inversion-equivalent:

>>> set_class = abjad.SetClass(4, 29)
>>> print(set_class)
SC(4-29){0, 1, 3, 7}
>>> pitch_class_set = set_class.prime_form
>>> inverted_pitch_class_set = pitch_class_set.invert()
>>> inverted_set_class = abjad.SetClass.from_pitches(inverted_pitch_class_set)
>>> print(inverted_set_class)
SC(4-29){0, 1, 3, 7}
>>> set_class.is_inversion_equivalent
True

Is inversion-equivalent:

>>> set_class = abjad.SetClass(
...     4,
...     29,
...     lex_rank=True,
... )
>>> print(set_class)
SC(4-29){0, 3, 6, 9}
>>> pitch_class_set = set_class.prime_form
>>> inverted_pitch_class_set = pitch_class_set.invert()
>>> inverted_set_class = abjad.SetClass.from_pitches(
...     inverted_pitch_class_set,
...     lex_rank=True,
... )
>>> print(inverted_set_class)
SC(4-29){0, 3, 6, 9}
>>> set_class.is_inversion_equivalent
True

Is not inversion-equivalent:

>>> set_class = abjad.SetClass(
...     4,
...     29,
...     lex_rank=True,
...     transposition_only=True,
... )
>>> print(set_class)
SC(4-29){0, 2, 6, 7}
>>> pitch_class_set = set_class.prime_form
>>> inverted_pitch_class_set = pitch_class_set.invert()
>>> inverted_set_class = abjad.SetClass.from_pitches(
...     inverted_pitch_class_set,
...     lex_rank=True,
...     transposition_only=True,
... )
>>> print(inverted_set_class)
SC(4-15){0, 1, 5, 7}
>>> set_class.is_inversion_equivalent
False
prime_form

Gets prime form.

Gets prime form of SG2 set-class with Forte rank:

>>> set_class = abjad.SetClass(4, 29)
>>> print(set_class)
SC(4-29){0, 1, 3, 7}
>>> set_class.prime_form
PitchClassSet([0, 1, 3, 7])

Gets prime form of SG2 set-class with lex rank:

>>> set_class = abjad.SetClass(
...     4,
...     29,
...     lex_rank=True,
... )
>>> print(set_class)
SC(4-29){0, 3, 6, 9}
>>> set_class.prime_form
PitchClassSet([0, 3, 6, 9])

Gets prime form of SG1 set-class:

>>> set_class = abjad.SetClass(
...     4,
...     29,
...     lex_rank=True,
...     transposition_only=True,
... )
>>> print(set_class)
SC(4-29){0, 2, 6, 7}
>>> set_class.prime_form
PitchClassSet([0, 2, 6, 7])

Returns numbered pitch-class set.