math

Abjad’s math library.

digraph InheritanceGraph { graph [bgcolor=transparent, color=lightsteelblue2, fontname=Arial, fontsize=10, outputorder=edgesfirst, overlap=prism, penwidth=2, rankdir=LR, splines=spline, style="dashed, rounded", truecolor=true]; node [colorscheme=pastel19, fontname=Arial, fontsize=10, height=0, penwidth=2, shape=box, style="filled, rounded", width=0]; edge [color=lightslategrey, penwidth=1]; subgraph "cluster_abjad.math" { graph [label="abjad.math"]; node [color=1]; "abjad.math.Infinity" [URL="../api/abjad/math.html#abjad.math.Infinity", color=black, fontcolor=white, label=Infinity, target=_top]; "abjad.math.NegativeInfinity" [URL="../api/abjad/math.html#abjad.math.NegativeInfinity", color=black, fontcolor=white, label="Negative\nInfinity", target=_top]; "abjad.math.Infinity" -> "abjad.math.NegativeInfinity"; } subgraph cluster_builtins { graph [label=builtins]; node [color=2]; "builtins.object" [URL="https://docs.python.org/3/library/functions.html#object", label=object, target=_top]; } "builtins.object" -> "abjad.math.Infinity"; }


Classes

Infinity

Infinity.

NegativeInfinity

Negative infinity.

class abjad.math.Infinity[source]

Infinity.

All numbers compare less than infinity:

>>> 9999999 < abjad.Infinity()
True
>>> 2**38 < abjad.Infinity()
True

Infinity compares equal to itself:

>>> abjad.Infinity() == abjad.Infinity()
True

Negative infinity compares less than infinity:

>>> abjad.NegativeInfinity() < abjad.Infinity()
True

Initializes as a system singleton at start-up.

Available as a built-in after Abjad starts.


Attributes Summary

__eq__

Compares type.

__float__

Convert infinity to float.

__ge__

Is true for all values of argument.

__gt__

Is true for all noninfinite values of argument.

__hash__

Hashes infinity.

__le__

Is true when argument is infinite.

__lt__

Is true for no values of argument.

__repr__

Gets repr.

__sub__

Subtracts argument from infinity.


Special methods

overridden __eq__(argument) bool[source]

Compares type.

__float__()[source]

Convert infinity to float.

Returns float.

overridden __ge__(argument)[source]

Is true for all values of argument.

Returns true.

overridden __gt__(argument)[source]

Is true for all noninfinite values of argument.

Returns true or false.

overridden __hash__()[source]

Hashes infinity.

overridden __le__(argument)[source]

Is true when argument is infinite.

Returns true or false.

overridden __lt__(argument)[source]

Is true for no values of argument.

Returns true or false.

overridden __repr__() str[source]

Gets repr.

__sub__(argument)[source]

Subtracts argument from infinity.

Returns infinity or 0 if argument is also infinity.

class abjad.math.NegativeInfinity[source]

Negative infinity.

All numbers compare greater than negative infinity:

>>> abjad.NegativeInfinity() < -9999999
True

Negative infinity compares equal to itself:

>>> abjad.NegativeInfinity() == abjad.NegativeInfinity()
True

Negative infinity compares less than infinity:

>>> abjad.NegativeInfinity() < abjad.Infinity()
True

Initializes as a system singleton at start-up.

Available as a built-in after Abjad start.


Special methods

(Infinity).__eq__(argument) bool

Compares type.

(Infinity).__float__()

Convert infinity to float.

Returns float.

(Infinity).__ge__(argument)

Is true for all values of argument.

Returns true.

(Infinity).__gt__(argument)

Is true for all noninfinite values of argument.

Returns true or false.

(Infinity).__hash__()

Hashes infinity.

(Infinity).__le__(argument)

Is true when argument is infinite.

Returns true or false.

(Infinity).__lt__(argument)

Is true for no values of argument.

Returns true or false.

(Infinity).__repr__() str

Gets repr.

(Infinity).__sub__(argument)

Subtracts argument from infinity.

Returns infinity or 0 if argument is also infinity.


Functions

all_are_equal

Is true when argument is an iterable collection of equal items.

all_are_integer_equivalent

Is true when argument is an iterable collection with integer-equivalent items.

all_are_integer_equivalent_numbers

Is true when argument is an iterable collection with integer-equivalent items.

all_are_nonnegative_integer_equivalent_numbers

Is true when argument is an iterable collection of nonnegative integer-equivalent numbers.

all_are_nonnegative_integer_powers_of_two

Is true when argument is an iterable collection of nonnegative integer powers of two.

all_are_nonnegative_integers

Is true when argument is an iterable collection of nonnegative integers.

all_are_pairs_of_types

Is true when argument is an iterable collection whose members are all of length 2, and where the first member of each pair is an instance of first_type and where the second member of each pair is an instance of second_type.

all_are_positive_integers

Is true when argument is an iterable collection of positive integers.

are_relatively_prime

Is true when argument is an iterable collection of relative primes.

arithmetic_mean

Gets arithmetic mean of argument.

binomial_coefficient

Gets binomial coefficient of n choose k.

cumulative_products

Gets cumulative products of argument.

cumulative_sums

Gets cumulative sums of argument.

difference_series

Gets difference series of argument.

divide_integer_by_ratio

Divides integer n by tuple ratio.

divisors

Gets positive divisors of n in increasing order.

factors

Gets prime factors less than or equal to n .

fraction_to_proper_fraction

Changes rational to proper fraction.

greatest_common_divisor

Calculates greatest common divisor of integers.

greatest_power_of_two_less_equal

Gets greatest integer power of two less than or equal to positive n.

integer_equivalent_number_to_integer

Changes integer-equivalent number to integer.

integer_to_base_k_tuple

Changes nonnegative integer n to base-k tuple.

integer_to_binary_string

Changes positive integer n to binary string.

is_assignable_integer

Is true when argument is equivalent to an integer that can be written without recourse to ties.

is_integer_equivalent

Is true when argument is an integer-equivalent number.

is_integer_equivalent_n_tuple

Is true when argument is a tuple of n integer-equivalent items.

is_integer_equivalent_number

Is true when argument is a number and argument is equivalent to an integer.

is_nonnegative_integer

Is true when argument equals a nonnegative integer.

is_nonnegative_integer_equivalent_number

Is true when argument is a nonnegative integer-equivalent number.

is_nonnegative_integer_power_of_two

Is true when argument is a nonnegative integer power of 2.

is_positive_integer

Is true when argument equals a positive integer.

is_positive_integer_equivalent_number

Is true when argument is a positive integer-equivalent number.

is_positive_integer_power_of_two

Is true when argument is a positive integer power of 2.

least_common_multiple

Gets least common multiple of positive integers.

partition_integer_by_ratio

Partitions positive integer-equivalent n by ratio.

partition_integer_into_canonic_parts

Partitions integer n into canonic parts.

sign

Gets sign of n.

weight

Gets weight of argument.

yield_all_compositions_of_integer

Yields all compositions of positive integer n.

abjad.math.all_are_equal(argument) bool[source]

Is true when argument is an iterable collection of equal items.

>>> abjad.math.all_are_equal([99, 99, 99, 99, 99, 99])
True
>>> abjad.math.all_are_equal(17)
False

Is true when argument is empty:

>>> abjad.math.all_are_equal([])
True
abjad.math.all_are_integer_equivalent(argument) bool[source]

Is true when argument is an iterable collection with integer-equivalent items.

>>> import fractions
>>> items = [1, "2", 3.0, fractions.Fraction(4, 1)]
>>> abjad.math.all_are_integer_equivalent(items)
True
>>> abjad.math.all_are_integer_equivalent([1, "2", 3.5, 4])
False
abjad.math.all_are_integer_equivalent_numbers(argument) bool[source]

Is true when argument is an iterable collection with integer-equivalent items.

>>> import fractions
>>> items = [1, 2, 3.0, fractions.Fraction(4, 1)]
>>> abjad.math.all_are_integer_equivalent_numbers(items)
True
>>> abjad.math.all_are_integer_equivalent_numbers([1, 2, 3.5, 4])
False
abjad.math.all_are_nonnegative_integer_equivalent_numbers(argument) bool[source]

Is true when argument is an iterable collection of nonnegative integer-equivalent numbers.

>>> import fractions
>>> items = [0, 0.0, fractions.Fraction(0), 2, 2.0, fractions.Fraction(2)]
>>> abjad.math.all_are_nonnegative_integer_equivalent_numbers(items)
True
>>> items = [0, 0.0, fractions.Fraction(0), -2, 2.0, fractions.Fraction(2)]
>>> abjad.math.all_are_nonnegative_integer_equivalent_numbers(items)
False
abjad.math.all_are_nonnegative_integer_powers_of_two(argument) bool[source]

Is true when argument is an iterable collection of nonnegative integer powers of two.

>>> items = [0, 1, 1, 1, 2, 4, 32, 32]
>>> abjad.math.all_are_nonnegative_integer_powers_of_two(items)
True
>>> abjad.math.all_are_nonnegative_integer_powers_of_two(17)
False

Is true when argument is empty:

>>> abjad.math.all_are_nonnegative_integer_powers_of_two([])
True
abjad.math.all_are_nonnegative_integers(argument) bool[source]

Is true when argument is an iterable collection of nonnegative integers.

>>> abjad.math.all_are_nonnegative_integers([0, 1, 2, 99])
True
>>> abjad.math.all_are_nonnegative_integers([0, 1, 2, -99])
False
abjad.math.all_are_pairs_of_types(argument, first_type, second_type) bool[source]

Is true when argument is an iterable collection whose members are all of length 2, and where the first member of each pair is an instance of first_type and where the second member of each pair is an instance of second_type.

>>> items = [(1.0, "a"), (2.1, "b"), (3.45, "c")]
>>> abjad.math.all_are_pairs_of_types(items, float, str)
True
>>> abjad.math.all_are_pairs_of_types("foo", float, str)
False

Is true when argument is empty:

>>> abjad.math.all_are_pairs_of_types([], float, str)
True
abjad.math.all_are_positive_integers(argument) bool[source]

Is true when argument is an iterable collection of positive integers.

>>> abjad.math.all_are_positive_integers([1, 2, 3, 99])
True
>>> abjad.math.all_are_positive_integers(17)
False
abjad.math.are_relatively_prime(argument) bool[source]

Is true when argument is an iterable collection of relative primes.

>>> abjad.math.are_relatively_prime([13, 14, 15])
True
>>> abjad.math.are_relatively_prime([13, 14, 15, 16])
False
>>> abjad.math.are_relatively_prime("text")
False

Returns true when argument is empty:

>>> abjad.math.are_relatively_prime([])
True
abjad.math.arithmetic_mean(argument) int | float | Fraction[source]

Gets arithmetic mean of argument.

>>> abjad.math.arithmetic_mean([1, 2, 2, 20, 30])
11
>>> abjad.math.arithmetic_mean([1, 2, 20])
Fraction(23, 3)
>>> abjad.math.arithmetic_mean([2, 2, 20.0])
8.0

Raises exception when argument is not iterable.

abjad.math.binomial_coefficient(n, k) int[source]

Gets binomial coefficient of n choose k.

>>> for k in range(8):
...     print(k, "      ", abjad.math.binomial_coefficient(8, k))
... 
0        1
1        8
2        28
3        56
4        70
5        56
6        28
7        8
abjad.math.cumulative_products(argument)[source]

Gets cumulative products of argument.

>>> abjad.math.cumulative_products([1, 2, 3, 4, 5, 6, 7, 8])
[1, 2, 6, 24, 120, 720, 5040, 40320]
>>> abjad.math.cumulative_products([1, -2, 3, -4, 5, -6, 7, -8])
[1, -2, -6, 24, 120, -720, -5040, 40320]

Raises exception when argument is not iterable.

Returns new object of argument type.

abjad.math.cumulative_sums(argument, start=0)[source]

Gets cumulative sums of argument.

>>> abjad.math.cumulative_sums([1, 2, 3, 4, 5, 6, 7, 8], start=0)
[0, 1, 3, 6, 10, 15, 21, 28, 36]
>>> abjad.math.cumulative_sums([1, 2, 3, 4, 5, 6, 7, 8], start=None)
[1, 3, 6, 10, 15, 21, 28, 36]

Raises exception when argument is not iterable.

Returns new object of argument type.

abjad.math.difference_series(argument)[source]

Gets difference series of argument.

>>> abjad.math.difference_series([1, 1, 2, 3, 5, 5, 6])
[0, 1, 1, 2, 0, 1]
>>> abjad.math.difference_series([9, 6, 8, 5, 7, 4, 6])
[-3, 2, -3, 2, -3, 2]

Returns new object of argument type.

abjad.math.divide_integer_by_ratio(n, ratio) list[Fraction | float][source]

Divides integer n by tuple ratio.

>>> abjad.math.divide_integer_by_ratio(1, (1, 1, 3))
[Fraction(1, 5), Fraction(1, 5), Fraction(3, 5)]
>>> abjad.math.divide_integer_by_ratio(1.0, (1, 1, 3))
[0.2, 0.2, 0.6]
abjad.math.divisors(n) list[int][source]

Gets positive divisors of n in increasing order.

>>> abjad.math.divisors(84)
[1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 84]
>>> for x in range(10, 20):
...     print(x, abjad.math.divisors(x))
... 
10 [1, 2, 5, 10]
11 [1, 11]
12 [1, 2, 3, 4, 6, 12]
13 [1, 13]
14 [1, 2, 7, 14]
15 [1, 3, 5, 15]
16 [1, 2, 4, 8, 16]
17 [1, 17]
18 [1, 2, 3, 6, 9, 18]
19 [1, 19]

Allows nonpositive n:

>>> abjad.math.divisors(-27)
[1, 3, 9, 27]

Raises not implemented error on 0.

abjad.math.factors(n) list[int][source]

Gets prime factors less than or equal to n .

>>> abjad.math.factors(84)
[2, 2, 3, 7]
>>> for n in range(10, 20):
...     print(n, abjad.math.factors(n))
... 
10 [2, 5]
11 [11]
12 [2, 2, 3]
13 [13]
14 [2, 7]
15 [3, 5]
16 [2, 2, 2, 2]
17 [17]
18 [2, 3, 3]
19 [19]

n must be a positive integer.

Returns factors in increasing order.

abjad.math.fraction_to_proper_fraction(rational) tuple[int, Fraction][source]

Changes rational to proper fraction.

>>> import fractions
>>> abjad.math.fraction_to_proper_fraction(fractions.Fraction(116, 8))
(14, Fraction(1, 2))
abjad.math.greatest_common_divisor(*integers) int[source]

Calculates greatest common divisor of integers.

>>> abjad.math.greatest_common_divisor(84, -94, -144)
2

Allows nonpositive input.

Raises not implemented error when zero is included in input.

abjad.math.greatest_power_of_two_less_equal(n, i=0) int[source]

Gets greatest integer power of two less than or equal to positive n.

>>> for n in range(10, 20):
...     print("\t%s\t%s" % (n, abjad.math.greatest_power_of_two_less_equal(n)))
... 
	10	8
	11	8
	12	8
	13	8
	14	8
	15	8
	16	16
	17	16
	18	16
	19	16

Greatest-but-i integer power of 2 less than or equal to positive n:

>>> for n in range(10, 20):
...     print("\t%s\t%s" % (n, abjad.math.greatest_power_of_two_less_equal(n, i=1)))
... 
	10	4
	11	4
	12	4
	13	4
	14	4
	15	4
	16	8
	17	8
	18	8
	19	8
abjad.math.integer_equivalent_number_to_integer(number) int | float[source]

Changes integer-equivalent number to integer.

Returns integer-equivalent number as integer:

>>> abjad.math.integer_equivalent_number_to_integer(17.0)
17

Returns noninteger-equivalent number unchanged:

>>> abjad.math.integer_equivalent_number_to_integer(17.5)
17.5
abjad.math.integer_to_base_k_tuple(n, k) tuple[int, ...][source]

Changes nonnegative integer n to base-k tuple.

Gets base-10 digits of 1066:

>>> abjad.math.integer_to_base_k_tuple(1066, 10)
(1, 0, 6, 6)

Gets base-2 digits of 1066:

>>> abjad.math.integer_to_base_k_tuple(1066, 2)
(1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0)

Gets base-26 digits of 1066:

>>> abjad.math.integer_to_base_k_tuple(1066, 26)
(1, 15, 0)
abjad.math.integer_to_binary_string(n) str[source]

Changes positive integer n to binary string.

>>> for n in range(1, 16 + 1):
...     string = abjad.math.integer_to_binary_string(n)
...     print(f"{n}\t{string}")
... 
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111
16	10000
abjad.math.is_assignable_integer(argument) bool[source]

Is true when argument is equivalent to an integer that can be written without recourse to ties.

>>> for n in range(0, 16 + 1):
...     print("%s\t%s" % (n, abjad.math.is_assignable_integer(n)))
... 
0	False
1	True
2	True
3	True
4	True
5	False
6	True
7	True
8	True
9	False
10	False
11	False
12	True
13	False
14	True
15	True
16	True
abjad.math.is_integer_equivalent(argument) bool[source]

Is true when argument is an integer-equivalent number.

>>> abjad.math.is_integer_equivalent(12.0)
True
>>> abjad.math.is_integer_equivalent("12")
True
>>> abjad.math.is_integer_equivalent("foo")
False
abjad.math.is_integer_equivalent_n_tuple(argument, n) bool[source]

Is true when argument is a tuple of n integer-equivalent items.

>>> import fractions
>>> tuple_ = (2.0, "3", fractions.Fraction(4, 1))
>>> abjad.math.is_integer_equivalent_n_tuple(tuple_, 3)
True
>>> tuple_ = (2.5, "3", fractions.Fraction(4, 1))
>>> abjad.math.is_integer_equivalent_n_tuple(tuple_, 3)
False
abjad.math.is_integer_equivalent_number(argument) bool[source]

Is true when argument is a number and argument is equivalent to an integer.

>>> abjad.math.is_integer_equivalent_number(12.0)
True
>>> abjad.math.is_integer_equivalent_number(abjad.Duration(1, 2))
False
abjad.math.is_nonnegative_integer(argument) bool[source]

Is true when argument equals a nonnegative integer.

>>> abjad.math.is_nonnegative_integer(99)
True
>>> abjad.math.is_nonnegative_integer(0)
True
>>> abjad.math.is_nonnegative_integer(-1)
False
abjad.math.is_nonnegative_integer_equivalent_number(argument) bool[source]

Is true when argument is a nonnegative integer-equivalent number.

>>> duration = abjad.Duration(4, 2)
>>> abjad.math.is_nonnegative_integer_equivalent_number(duration)
True
abjad.math.is_nonnegative_integer_power_of_two(argument) bool[source]

Is true when argument is a nonnegative integer power of 2.

>>> for n in range(10):
...     print(n, abjad.math.is_nonnegative_integer_power_of_two(n))
... 
0 True
1 True
2 True
3 False
4 True
5 False
6 False
7 False
8 True
9 False
abjad.math.is_positive_integer(argument) bool[source]

Is true when argument equals a positive integer.

>>> abjad.math.is_positive_integer(99)
True
>>> abjad.math.is_positive_integer(0)
False
>>> abjad.math.is_positive_integer(-1)
False
abjad.math.is_positive_integer_equivalent_number(argument) bool[source]

Is true when argument is a positive integer-equivalent number.

>>> abjad.math.is_positive_integer_equivalent_number(abjad.Duration(4, 2))
True
abjad.math.is_positive_integer_power_of_two(argument) bool[source]

Is true when argument is a positive integer power of 2.

>>> for n in range(10):
...     print(n, abjad.math.is_positive_integer_power_of_two(n))
... 
0 False
1 True
2 True
3 False
4 True
5 False
6 False
7 False
8 True
9 False
abjad.math.least_common_multiple(*integers) int[source]

Gets least common multiple of positive integers.

>>> abjad.math.least_common_multiple(2, 4, 5, 10, 20)
20
>>> abjad.math.least_common_multiple(4, 4)
4
>>> abjad.math.least_common_multiple(4, 5)
20
>>> abjad.math.least_common_multiple(4, 6)
12
>>> abjad.math.least_common_multiple(4, 7)
28
>>> abjad.math.least_common_multiple(4, 8)
8
>>> abjad.math.least_common_multiple(4, 9)
36
>>> abjad.math.least_common_multiple(4, 10)
20
>>> abjad.math.least_common_multiple(4, 11)
44
abjad.math.partition_integer_by_ratio(n, ratio) list[int][source]

Partitions positive integer-equivalent n by ratio.

Returns result with weight equal to absolute value of n.

>>> abjad.math.partition_integer_by_ratio(10, (1, 2))
[3, 7]

Partitions positive integer-equivalent n by ratio with negative parts:

>>> abjad.math.partition_integer_by_ratio(10, (1, -2))
[3, -7]

Partitions negative integer-equivalent n by ratio:

>>> abjad.math.partition_integer_by_ratio(-10, (1, 2))
[-3, -7]

Partitions negative integer-equivalent n by ratio with negative parts:

>>> abjad.math.partition_integer_by_ratio(-10, (1, -2))
[-3, 7]

More examples:

>>> abjad.math.partition_integer_by_ratio(10, (1,))
[10]
>>> abjad.math.partition_integer_by_ratio(10, (1, 1))
[5, 5]
>>> abjad.math.partition_integer_by_ratio(10, (1, -1, -1))
[3, -4, -3]
>>> abjad.math.partition_integer_by_ratio(-10, (1, 1, 1, 1))
[-3, -2, -3, -2]
>>> abjad.math.partition_integer_by_ratio(-10, (1, 1, 1, 1, 1))
[-2, -2, -2, -2, -2]
abjad.math.partition_integer_into_canonic_parts(n, decrease_parts_monotonically=True) tuple[int, ...][source]

Partitions integer n into canonic parts.

Returns all parts positive on positive n:

>>> for n in range(1, 11):
...     print(n, abjad.math.partition_integer_into_canonic_parts(n))
... 
1 (1,)
2 (2,)
3 (3,)
4 (4,)
5 (4, 1)
6 (6,)
7 (7,)
8 (8,)
9 (8, 1)
10 (8, 2)

Returns all parts negative on negative n:

>>> for n in reversed(range(-20, -10)):
...     print(n, abjad.math.partition_integer_into_canonic_parts(n))
... 
-11 (-8, -3)
-12 (-12,)
-13 (-12, -1)
-14 (-14,)
-15 (-15,)
-16 (-16,)
-17 (-16, -1)
-18 (-16, -2)
-19 (-16, -3)
-20 (-16, -4)

Returns parts that increase monotonically:

>>> for n in range(11, 21):
...     print(
...         n,
...         abjad.math.partition_integer_into_canonic_parts(
...             n, decrease_parts_monotonically=False
...         ),
...     )
... 
11 (3, 8)
12 (12,)
13 (1, 12)
14 (14,)
15 (15,)
16 (16,)
17 (1, 16)
18 (2, 16)
19 (3, 16)
20 (4, 16)

Returns tuple with parts that decrease monotonically.

abjad.math.sign(n) int[source]

Gets sign of n.

Returns -1 on negative n:

>>> abjad.math.sign(-96.2)
-1

Returns 0 when n is 0:

>>> abjad.math.sign(0)
0

Returns 1 on positive n:

>>> abjad.math.sign(abjad.Duration(9, 8))
1
abjad.math.weight(argument) int[source]

Gets weight of argument.

>>> abjad.math.weight([-1, -2, 3, 4, 5])
15
>>> abjad.math.weight([])
0

Defined equal to sum of the absolute value of items in argument.

abjad.math.yield_all_compositions_of_integer(n: int) Iterator[tuple[int, ...]][source]

Yields all compositions of positive integer n.

>>> for tuple_ in abjad.math.yield_all_compositions_of_integer(5):
...     tuple_
... 
(5,)
(4, 1)
(3, 2)
(3, 1, 1)
(2, 3)
(2, 2, 1)
(2, 1, 2)
(2, 1, 1, 1)
(1, 4)
(1, 3, 1)
(1, 2, 2)
(1, 2, 1, 1)
(1, 1, 3)
(1, 1, 2, 1)
(1, 1, 1, 2)
(1, 1, 1, 1, 1)

Lists parts in descending lex order.

Parts sum to n.

Finds small values of n easily.

Takes around 4 seconds for n equal to 17.