import abjad
from .attackpointoptimizers import AttackPointOptimizer
from .gracehandlers import GraceHandler
from .heuristics import Heuristic
from .jobhandlers import JobHandler
from .qeventsequence import QEventSequence
from .qschemas import MeasurewiseQSchema, QSchema
[docs]
def quantize(
q_event_sequence: QEventSequence,
q_schema: QSchema | None = None,
grace_handler: GraceHandler | None = None,
heuristic: Heuristic | None = None,
job_handler: JobHandler | None = None,
attack_point_optimizer: AttackPointOptimizer | None = None,
attach_tempos: bool = True,
) -> abjad.Voice:
r"""
Quantizer function.
Quantizes sequences of attack-points, encapsulated by ``QEventSequences``,
into score trees.
.. container:: example
>>> durations = [1000] * 8
>>> pitches = range(8)
>>> q_event_sequence = \
... nauert.QEventSequence.from_millisecond_pitch_pairs(
... tuple(zip(durations, pitches)))
.. container:: example
Quantization defaults to outputting into a 4/4, quarter=60 musical structure:
>>> result = nauert.quantize(q_event_sequence)
>>> staff = abjad.Staff([result])
>>> score = abjad.Score([staff])
>>> abjad.show(score) # doctest: +SKIP
.. docs::
>>> string = abjad.lilypond(score)
>>> print(string)
\new Score
<<
\new Staff
{
\new Voice
{
{
\tempo 4=60
\time 4/4
c'4
cs'4
d'4
ef'4
}
{
e'4
f'4
fs'4
g'4
}
}
}
>>
.. container:: example
However, the behavior of the ``quantize`` function can be modified at
call-time. Passing a ``QSchema`` instance will alter the
macro-structure of the output.
Here, we quantize using settings specified by a ``MeasurewiseQSchema``,
which will cause the ``quantize`` function to group the output into
measures with different tempi and time signatures:
>>> measurewise_q_schema = nauert.MeasurewiseQSchema(
... {"tempo": ((1, 4), 78), "time_signature": (2, 4)},
... {"tempo": ((1, 8), 57), "time_signature": (5, 4)},
... )
>>> result = nauert.quantize(
... q_event_sequence,
... q_schema=measurewise_q_schema,
... )
>>> staff = abjad.Staff([result])
>>> score = abjad.Score([staff])
>>> abjad.show(score) # doctest: +SKIP
.. docs::
>>> string = abjad.lilypond(score)
>>> print(string)
\new Score
<<
\new Staff
{
\new Voice
{
{
\tempo 4=78
\time 2/4
c'4
~
\tuplet 5/4 {
c'16.
cs'8..
~
}
}
{
\tuplet 7/4 {
\tempo 8=57
\time 5/4
cs'16.
d'8
~
}
\tuplet 5/4 {
d'16
ef'16.
~
}
\tuplet 3/2 {
ef'16
e'8
~
}
\tuplet 7/4 {
e'16
f'8
~
f'32
~
}
f'32
fs'16.
~
\tuplet 5/4 {
fs'32
g'8
~
}
\tuplet 7/4 {
g'32
r32
r16
r16
r16
r16
r16
r16
}
r4
}
}
}
>>
.. container:: example
Here we quantize using settings specified by a ``BeatwiseQSchema``,
which keeps the output of the ``quantize`` function "flattened",
without measures or explicit time signatures. The default beat-wise
settings of quarter=60 persists until the third "beatspan":
>>> beatwise_q_schema = nauert.BeatwiseQSchema(
... {
... 2: {"tempo": ((1, 4), 120)},
... 5: {"tempo": ((1, 4), 90)},
... 7: {"tempo": ((1, 4), 30)},
... })
>>> result = nauert.quantize(
... q_event_sequence,
... q_schema=beatwise_q_schema,
... )
>>> staff = abjad.Staff([result])
>>> score = abjad.Score([staff])
>>> abjad.show(score) # doctest: +SKIP
.. docs::
>>> string = abjad.lilypond(score)
>>> print(string)
\new Score
<<
\new Staff
{
\new Voice
{
\tempo 4=60
c'4
cs'4
\tempo 4=120
d'2
ef'4
~
\tempo 4=90
ef'8.
e'4
~
e'16
~
\tuplet 3/2 {
\tempo 4=30
e'32
f'8.
fs'8
~
fs'32
~
}
\tuplet 3/2 {
fs'32
g'8.
r32
r8
}
}
}
>>
Note that ``TieChains`` are generally fused together in the above
example, but break at tempo changes.
.. container::
The use of `BeatwiseQSchema` and `MeasurewiseAttackPointOptimizer` is
not supported. Please raise an issue if you would like this to be
supported in the future.
>>> q_schema = nauert.BeatwiseQSchema()
>>> attack_point_optimizer = nauert.MeasurewiseAttackPointOptimizer()
>>> result = nauert.quantize(
... q_event_sequence,
... attack_point_optimizer=attack_point_optimizer,
... q_schema=q_schema,
... )
Traceback (most recent call last):
...
TypeError: BeatwiseQTarget is not supposed to be used together with MeasurewiseAttackPointOptimizer.
Other keyword arguments are:
* ``grace_handler``: a ``GraceHandler`` instance controls whether and
how grace notes are used in the output. Options currently include
``CollapsingGraceHandler``, ``ConcatenatingGraceHandler`` and
``DiscardingGraceHandler``.
* ``heuristic``: a ``Heuristic`` instance controls how output rhythms
are selected from a pool of candidates. Options currently include
the ``DistanceHeuristic`` class.
* ``job_handler``: a ``JobHandler`` instance controls whether or not
parallel processing is used during the quantization process.
Options include the ``SerialJobHandler`` and ``ParallelJobHandler``
classes.
* ``attack_point_optimizer``: an ``AttackPointOptimizer`` instance
controls whether and how logical ties are re-notated.
Options currently include ``MeasurewiseAttackPointOptimizer``,
``NaiveAttackPointOptimizer`` and ``NullAttackPointOptimizer``.
Refer to the reference pages for ``BeatwiseQSchema`` and
``MeasurewiseQSchema`` for more information on controlling the
``quantize`` function's output, and to the reference on ``SearchTree`` for
information on controlling the rhythmic complexity of that same output.
"""
q_event_sequence = QEventSequence(q_event_sequence)
if q_schema is None:
q_schema = MeasurewiseQSchema()
assert isinstance(q_schema, QSchema)
q_target = q_schema(q_event_sequence.duration_in_ms)
notation = q_target(
q_event_sequence,
grace_handler=grace_handler,
heuristic=heuristic,
job_handler=job_handler,
attack_point_optimizer=attack_point_optimizer,
attach_tempos=attach_tempos,
)
return notation