Source code for abjad.meter

"""
Tools for modeling musical meter.
"""

import bisect
import collections
import fractions
import typing

import uqbar.graphs

from . import _getlib, _iterlib
from . import duration as _duration
from . import indicators as _indicators
from . import lilypondfile as _lilypondfile
from . import math as _math
from . import mutate as _mutate
from . import parentage as _parentage
from . import rhythmtrees as _rhythmtrees
from . import score as _score
from . import select as _select
from . import sequence as _sequence
from . import timespan as _timespan


[docs] class Meter: """ Meter. Meter models rhythmic organization structured as a tree. .. container:: example ``4/4`` grouped two different ways: >>> rtc = abjad.meter.make_best_guess_rtc((4, 4)) >>> meter = abjad.Meter(rtc) >>> print(meter.pretty_rtm_format) (4/4 ( 1/4 1/4 1/4 1/4)) >>> abjad.graph(meter) # doctest: +SKIP >>> string = "(4/4 ((2/4 (1/4 1/4)) (2/4 (1/4 1/4))))" >>> rtc = abjad.rhythmtrees.parse(string)[0] >>> meter = abjad.Meter(rtc) >>> print(meter.pretty_rtm_format) (4/4 ( (2/4 ( 1/4 1/4)) (2/4 ( 1/4 1/4)))) >>> abjad.graph(meter) # doctest: +SKIP .. container:: example ``6/4`` grouped four different ways: >>> rtc = abjad.meter.make_best_guess_rtc((6, 4)) >>> meter = abjad.Meter(rtc) >>> print(meter.pretty_rtm_format) (6/4 ( (3/4 ( 1/4 1/4 1/4)) (3/4 ( 1/4 1/4 1/4)))) >>> abjad.graph(meter) # doctest: +SKIP >>> string = "(6/4 (1/4 1/4 1/4 1/4 1/4 1/4))" >>> rtc = abjad.rhythmtrees.parse(string)[0] >>> meter = abjad.Meter(rtc) >>> print(meter.pretty_rtm_format) (6/4 ( 1/4 1/4 1/4 1/4 1/4 1/4)) >>> abjad.graph(meter) # doctest: +SKIP >>> string = "(6/4 ((2/4 (1/4 1/4)) (2/4 (1/4 1/4)) (2/4 (1/4 1/4))))" >>> rtc = abjad.rhythmtrees.parse(string)[0] >>> meter = abjad.Meter(rtc) >>> print(meter.pretty_rtm_format) (6/4 ( (2/4 ( 1/4 1/4)) (2/4 ( 1/4 1/4)) (2/4 ( 1/4 1/4)))) >>> abjad.graph(meter) # doctest: +SKIP >>> part = "(3/8 (1/8 1/8 1/8))" >>> string = f"(6/4 ({part} {part} {part} {part}))" >>> rtc = abjad.rhythmtrees.parse(string)[0] >>> meter = abjad.Meter(rtc) >>> print(meter.pretty_rtm_format) (6/4 ( (3/8 ( 1/8 1/8 1/8)) (3/8 ( 1/8 1/8 1/8)) (3/8 ( 1/8 1/8 1/8)) (3/8 ( 1/8 1/8 1/8)))) >>> abjad.graph(meter) # doctest: +SKIP .. container:: example ``7/4`` grouped three different ways: >>> string = "(7/4 ((2/4 (1/4 1/4)) (2/4 (1/4 1/4)) (3/4 (1/4 1/4 1/4))))" >>> rtc = abjad.rhythmtrees.parse(string)[0] >>> meter = abjad.Meter(rtc) >>> print(meter.pretty_rtm_format) (7/4 ( (2/4 ( 1/4 1/4)) (2/4 ( 1/4 1/4)) (3/4 ( 1/4 1/4 1/4)))) >>> abjad.graph(meter) # doctest: +SKIP >>> string = "(7/4 ((2/4 (1/4 1/4)) (3/4 (1/4 1/4 1/4)) (2/4 (1/4 1/4))))" >>> rtc = abjad.rhythmtrees.parse(string)[0] >>> meter = abjad.Meter(rtc) >>> print(meter.pretty_rtm_format) (7/4 ( (2/4 ( 1/4 1/4)) (3/4 ( 1/4 1/4 1/4)) (2/4 ( 1/4 1/4)))) >>> abjad.graph(meter) # doctest: +SKIP >>> string = "(7/4 ((3/4 (1/4 1/4 1/4)) (2/4 (1/4 1/4)) (2/4 (1/4 1/4))))" >>> rtc = abjad.rhythmtrees.parse(string)[0] >>> meter = abjad.Meter(rtc) >>> print(meter.pretty_rtm_format) (7/4 ( (3/4 ( 1/4 1/4 1/4)) (2/4 ( 1/4 1/4)) (2/4 ( 1/4 1/4)))) >>> abjad.graph(meter) # doctest: +SKIP """ ### CLASS VARIABLES ### __slots__ = ( "_denominator", "_numerator", "_root_node", ) ### INITIALIZER ### def __init__( self, root_node: _rhythmtrees.RhythmTreeContainer, ) -> None: assert isinstance(root_node, _rhythmtrees.RhythmTreeContainer), repr(root_node) for node in [root_node] + list(root_node.depth_first()): assert node.prolation == 1, (repr(node), repr(node.prolation)) numerator, denominator = root_node.pair self._denominator = denominator self._numerator = numerator self._root_node = root_node ### SPECIAL METHODS ###
[docs] def __eq__(self, argument) -> bool: """ Compares ``root_node.rtm_format`` of self to that of ``argument``. """ if isinstance(argument, type(self)): return self.root_node.rtm_format == argument.root_node.rtm_format return False
[docs] def __graph__(self, **keywords) -> uqbar.graphs.Graph: """ Gets Graphviz format of meter. .. container:: example >>> rtc = abjad.meter.make_best_guess_rtc((7, 4)) >>> meter = abjad.Meter(rtc) >>> abjad.graph(meter) # doctest: +SKIP .. docs:: >>> graph = meter.__graph__() >>> string = format(graph, 'graphviz') >>> print(string) digraph G { graph [bgcolor=transparent, fontname=Arial, penwidth=2, truecolor=true]; node [fontname=Arial, fontsize=12, penwidth=2]; edge [penwidth=2]; node_0 [label="7/4", shape=triangle]; node_1 [label="3/4", shape=triangle]; node_2 [label="1/4", shape=box]; node_3 [label="1/4", shape=box]; node_4 [label="1/4", shape=box]; node_5 [label="2/4", shape=triangle]; node_6 [label="1/4", shape=box]; node_7 [label="1/4", shape=box]; node_8 [label="2/4", shape=triangle]; node_9 [label="1/4", shape=box]; node_10 [label="1/4", shape=box]; subgraph cluster_offsets { graph [style=rounded]; node_11_0 [color=white, fillcolor=black, fontcolor=white, fontname="Arial bold", label="{ <f_0_0> 0 | <f_0_1> +++ }", shape=Mrecord, style=filled]; node_11_1 [color=white, fillcolor=black, fontcolor=white, fontname="Arial bold", label="{ <f_0_0> 1/4 | <f_0_1> + }", shape=Mrecord, style=filled]; node_11_2 [color=white, fillcolor=black, fontcolor=white, fontname="Arial bold", label="{ <f_0_0> 1/2 | <f_0_1> + }", shape=Mrecord, style=filled]; node_11_3 [color=white, fillcolor=black, fontcolor=white, fontname="Arial bold", label="{ <f_0_0> 3/4 | <f_0_1> ++ }", shape=Mrecord, style=filled]; node_11_4 [color=white, fillcolor=black, fontcolor=white, fontname="Arial bold", label="{ <f_0_0> 1 | <f_0_1> + }", shape=Mrecord, style=filled]; node_11_5 [color=white, fillcolor=black, fontcolor=white, fontname="Arial bold", label="{ <f_0_0> 5/4 | <f_0_1> ++ }", shape=Mrecord, style=filled]; node_11_6 [color=white, fillcolor=black, fontcolor=white, fontname="Arial bold", label="{ <f_0_0> 3/2 | <f_0_1> + }", shape=Mrecord, style=filled]; node_11_7 [label="{ <f_0_0> 7/4 | <f_0_1> +++ }", shape=Mrecord]; } node_0 -> node_1; node_0 -> node_5; node_0 -> node_8; node_1 -> node_2; node_1 -> node_3; node_1 -> node_4; node_2 -> node_11_0 [style=dotted]; node_2 -> node_11_1 [style=dotted]; node_3 -> node_11_1 [style=dotted]; node_3 -> node_11_2 [style=dotted]; node_4 -> node_11_2 [style=dotted]; node_4 -> node_11_3 [style=dotted]; node_5 -> node_6; node_5 -> node_7; node_6 -> node_11_3 [style=dotted]; node_6 -> node_11_4 [style=dotted]; node_7 -> node_11_4 [style=dotted]; node_7 -> node_11_5 [style=dotted]; node_8 -> node_9; node_8 -> node_10; node_9 -> node_11_5 [style=dotted]; node_9 -> node_11_6 [style=dotted]; node_10 -> node_11_6 [style=dotted]; node_10 -> node_11_7 [style=dotted]; } """ def make_offset_node(offset, leaf_one=None, leaf_two=None, is_last=False): assert isinstance(offset, _duration.Offset), repr(offset) if not is_last: offset_node = uqbar.graphs.Node( attributes={ "shape": "Mrecord", "style": "filled", "color": "white", "fontname": "Arial bold", "fontcolor": "white", "fillcolor": "black", } ) else: offset_node = uqbar.graphs.Node(attributes={"shape": "Mrecord"}) offset_field = uqbar.graphs.RecordField(label=str(offset)) weight_field = uqbar.graphs.RecordField( label="+" * offset_counter.items[offset] ) group = uqbar.graphs.RecordGroup() group.extend([offset_field, weight_field]) offset_node.append(group) offset_subgraph.append(offset_node) leaf_one_node = node_mapping[leaf_one] edge = uqbar.graphs.Edge(attributes={"style": "dotted"}) edge.attach(leaf_one_node, offset_node) if leaf_two: leaf_two_node = node_mapping[leaf_two] edge = uqbar.graphs.Edge(attributes={"style": "dotted"}) edge.attach(leaf_two_node, offset_node) offsets = _sequence.flatten(self.depthwise_offset_inventory, depth=-1) offset_counter = _timespan.OffsetCounter(offsets) graph = uqbar.graphs.Graph( name="G", attributes={ "bgcolor": "transparent", "fontname": "Arial", "penwidth": 2, "truecolor": True, }, edge_attributes={"penwidth": 2}, node_attributes={"fontname": "Arial", "fontsize": 12, "penwidth": 2}, ) node_mapping = {} root_node = self._root_node nodes = [root_node] + list(root_node.depth_first()) leaves = [_ for _ in nodes if not hasattr(_, "children")] for node in nodes: graphviz_node = uqbar.graphs.Node() graphviz_node.attributes["label"] = node._get_fraction_string() if isinstance(node, _rhythmtrees.RhythmTreeContainer): graphviz_node.attributes["shape"] = "triangle" else: graphviz_node.attributes["shape"] = "box" graph.append(graphviz_node) node_mapping[node] = graphviz_node if node.parent is not None: uqbar.graphs.Edge().attach( node_mapping[node.parent], node_mapping[node] ) offset = leaves[0].start_offset offset_subgraph = uqbar.graphs.Graph( name="cluster_offsets", attributes={"style": "rounded"} ) graph.append(offset_subgraph) make_offset_node(offset, leaves[0]) for one, two in _sequence.nwise(leaves): offset = one.stop_offset make_offset_node(offset, one, two) offset = leaves[-1].stop_offset make_offset_node(offset, leaves[-1], is_last=True) return graph
[docs] def __hash__(self) -> int: """ Hashes meter. """ return super().__hash__()
[docs] def __iter__(self) -> typing.Iterator[tuple[tuple[int, int], tuple[int, int]]]: """ Iterates meter. .. container:: example Iterates ``5/4``: >>> rtc = abjad.meter.make_best_guess_rtc((5, 4)) >>> meter = abjad.Meter(rtc) >>> for pair in meter: ... pair ... ((0, 4), (1, 4)) ((1, 4), (2, 4)) ((2, 4), (3, 4)) ((0, 4), (3, 4)) ((3, 4), (4, 4)) ((4, 4), (5, 4)) ((3, 4), (5, 4)) ((0, 4), (5, 4)) """ def recurse(node): nodes = [] for child in node: if isinstance(child, _rhythmtrees.RhythmTreeLeaf): nodes.append(child) else: assert isinstance(child, _rhythmtrees.RhythmTreeContainer) nodes.extend(recurse(child)) nodes.append(node) return nodes nodes = recurse(self.root_node) assert isinstance(nodes, list) for node in nodes: pair = _duration.with_denominator(node.start_offset, self.denominator) start_offset = pair pair = _duration.with_denominator(node.stop_offset, self.denominator) stop_offset = pair yield start_offset, stop_offset
[docs] def __repr__(self) -> str: """ Gets repr. """ return f"{type(self).__name__}({self.rtm_format!r})"
### PUBLIC PROPERTIES ### @property def denominator(self) -> int: """ Gets denominator of meter. .. container:: example >>> rtc = abjad.meter.make_best_guess_rtc((7, 4)) >>> meter = abjad.Meter(rtc) >>> meter.denominator 4 """ return self._denominator @property def depthwise_offset_inventory(self) -> tuple: """ Gets depthwise offset inventory of meter. .. container:: example >>> rtc = abjad.meter.make_best_guess_rtc((7, 4)) >>> meter = abjad.Meter(rtc) >>> for depth, offsets in enumerate( ... meter.depthwise_offset_inventory): ... print(f"{depth}:") ... for offset in offsets: ... print(f" {offset!r}") 0: Offset((0, 1)) Offset((7, 4)) 1: Offset((0, 1)) Offset((3, 4)) Offset((5, 4)) Offset((7, 4)) 2: Offset((0, 1)) Offset((1, 4)) Offset((1, 2)) Offset((3, 4)) Offset((1, 1)) Offset((5, 4)) Offset((3, 2)) Offset((7, 4)) """ inventory = [] all_offsets = set() all_offsets.add(_duration.Offset(self.numerator, self.denominator)) for depth, nodes in sorted(self.root_node._depthwise_inventory().items()): for node in nodes: all_offsets.add(_duration.Offset(node.start_offset)) inventory.append(tuple(sorted(all_offsets))) return tuple(inventory) @property def duration(self) -> _duration.Duration: """ Gets duration of meter. .. container:: example >>> rtc = abjad.meter.make_best_guess_rtc((7, 4)) >>> meter = abjad.Meter(rtc) >>> meter.duration Duration(7, 4) """ return _duration.Duration(self.numerator, self.denominator) @property def fraction_string(self) -> str: """ Gets fraction string. """ return f"{self.pair[0]}/{self.pair[1]}" @property def implied_time_signature(self) -> _indicators.TimeSignature: """ Gets implied time signature of meter. .. container:: example >>> rtc = abjad.meter.make_best_guess_rtc((4, 4)) >>> meter = abjad.Meter(rtc) >>> meter.implied_time_signature TimeSignature(pair=(4, 4), hide=False, partial=None) """ pair = self.root_node.pair return _indicators.TimeSignature(pair) @property def is_compound(self) -> bool: """ Is true when meter is compound. .. container:: example Compound meters written over ``4``: >>> for numerator in range(1, 13): ... rtc = abjad.meter.make_best_guess_rtc((numerator, 4)) ... meter = abjad.Meter(rtc) ... string = True if meter.is_compound else '' ... print(str(meter.fraction_string), string) ... 1/4 2/4 3/4 4/4 5/4 6/4 True 7/4 8/4 9/4 True 10/4 11/4 12/4 True .. container:: example Compound meters written over ``8``: >>> for numerator in range(1, 13): ... rtc = abjad.meter.make_best_guess_rtc((numerator, 8)) ... meter = abjad.Meter(rtc) ... string = True if meter.is_compound else '' ... print(str(meter.fraction_string), string) ... 1/8 2/8 3/8 4/8 5/8 6/8 True 7/8 8/8 9/8 True 10/8 11/8 12/8 True Compound meters defined equal to those meters with a numerator divisible by ``3`` (but not equal to ``3``). """ if 3 in _math.divisors(self.numerator): if not self.numerator == 3: return True return False @property def is_simple(self) -> bool: """ Is true when meter is simple. .. container:: example Simple meters written over ``4``: >>> for numerator in range(1, 13): ... rtc = abjad.meter.make_best_guess_rtc((numerator, 4)) ... meter = abjad.Meter(rtc) ... string = True if meter.is_simple else '' ... print(str(meter.fraction_string), string) ... 1/4 True 2/4 True 3/4 True 4/4 True 5/4 True 6/4 7/4 True 8/4 True 9/4 10/4 True 11/4 True 12/4 .. container:: example Simple meters written over ``8``: >>> for numerator in range(1, 13): ... rtc = abjad.meter.make_best_guess_rtc((numerator, 8)) ... meter = abjad.Meter(rtc) ... string = True if meter.is_simple else '' ... print(str(meter.fraction_string), string) ... 1/8 True 2/8 True 3/8 True 4/8 True 5/8 True 6/8 7/8 True 8/8 True 9/8 10/8 True 11/8 True 12/8 Simple meters defined equal to those meters with a numerator not divisible by ``3``. Meters with numerator equal to ``3`` are also defined as simple. """ return not self.is_compound @property def numerator(self) -> int: """ Gets numerator of meter. .. container:: example >>> rtc = abjad.meter.make_best_guess_rtc((7, 4)) >>> meter = abjad.Meter(rtc) >>> meter.numerator 7 """ return self._numerator @property def pair(self) -> tuple[int, int]: """ Gets pair of numerator and denominator of meter. .. container:: example >>> rtc = abjad.meter.make_best_guess_rtc((6, 4)) >>> meter = abjad.Meter(rtc) >>> meter.pair (6, 4) """ return (self.numerator, self.denominator) @property def pretty_rtm_format(self) -> str: """ Gets pretty RTM format of meter. .. container:: example >>> rtc = abjad.meter.make_best_guess_rtc((7, 4)) >>> meter = abjad.Meter(rtc) >>> print(meter.pretty_rtm_format) (7/4 ( (3/4 ( 1/4 1/4 1/4)) (2/4 ( 1/4 1/4)) (2/4 ( 1/4 1/4)))) """ return self.root_node.pretty_rtm_format @property def root_node(self) -> _rhythmtrees.RhythmTreeContainer: """ Gets root node of meter. .. container:: example >>> rtc = abjad.meter.make_best_guess_rtc((7, 4)) >>> meter = abjad.Meter(rtc) >>> for item in meter.root_node: ... item RhythmTreeContainer((3, 4)) RhythmTreeContainer((2, 4)) RhythmTreeContainer((2, 4)) """ return self._root_node @property def rtm_format(self) -> str: """ Gets RTM format of meter. .. container:: example >>> rtc = abjad.meter.make_best_guess_rtc((7, 4)) >>> meter = abjad.Meter(rtc) >>> meter.rtm_format '(7/4 ((3/4 (1/4 1/4 1/4)) (2/4 (1/4 1/4)) (2/4 (1/4 1/4))))' """ return self._root_node.rtm_format ### PUBLIC METHODS ###
[docs] @staticmethod def fit_meters( offset_counter: _timespan.OffsetCounter, meters: typing.Sequence["Meter"], denominator: int = 32, maximum_run_length: int | None = None, ) -> list["Meter"]: """ Finds the best-matching sequence of meters for the offsets contained in ``offset_counter``. .. container:: example >>> pairs = [(3, 4), (4, 4), (5, 4)] >>> rtcs = [abjad.meter.make_best_guess_rtc(_) for _ in pairs] >>> meters = [abjad.Meter(_) for _ in rtcs] .. container:: example Matches a series of hypothetical ``4/4`` measures: >>> pairs = [(0, 4), (4, 4), (8, 4), (12, 4), (16, 4)] >>> offsets = [abjad.Offset(_) for _ in pairs] >>> offset_counter = abjad.OffsetCounter(offsets) >>> for meter in abjad.Meter.fit_meters(offset_counter, meters): ... print(meter.implied_time_signature) ... TimeSignature(pair=(4, 4), hide=False, partial=None) TimeSignature(pair=(4, 4), hide=False, partial=None) TimeSignature(pair=(4, 4), hide=False, partial=None) TimeSignature(pair=(4, 4), hide=False, partial=None) .. container:: example Matches a series of hypothetical ``5/4`` measures: >>> pairs = [(0, 4), (3, 4), (5, 4), (10, 4), (15, 4), (20, 4)] >>> offsets = [abjad.Offset(_) for _ in pairs] >>> offset_counter = abjad.OffsetCounter(offsets) >>> for meter in abjad.Meter.fit_meters(offset_counter, meters): ... print(meter.implied_time_signature) ... TimeSignature(pair=(3, 4), hide=False, partial=None) TimeSignature(pair=(4, 4), hide=False, partial=None) TimeSignature(pair=(3, 4), hide=False, partial=None) TimeSignature(pair=(5, 4), hide=False, partial=None) TimeSignature(pair=(5, 4), hide=False, partial=None) """ assert all(isinstance(_, Meter) for _ in meters), repr(meters) assert isinstance(offset_counter, _timespan.OffsetCounter), repr(offset_counter) session = _MeterFittingSession( kernel_denominator=denominator, maximum_run_length=maximum_run_length, meters=meters, offset_counter=offset_counter, ) meters = list(session()) assert all(isinstance(_, Meter) for _ in meters), repr(meters) return meters
[docs] def generate_offset_kernel_to_denominator( self, denominator: int ) -> "MetricAccentKernel": r""" Generates MAK (dictionary) of all offsets in ``self`` up to ``denominator``. Keys of MAK are offsets. Values of MAK are normalized weights of those offsets. This is useful for testing how strongly a collection of offsets responds to a given meter. .. container:: example >>> rtc = abjad.meter.make_best_guess_rtc((4, 4)) >>> meter = abjad.Meter(rtc) >>> kernel = meter.generate_offset_kernel_to_denominator(8) >>> for offset, weight in sorted(kernel.kernel.items()): ... print(f"{offset!r}\t{weight!r}") ... Offset((0, 1)) Fraction(3, 16) Offset((1, 8)) Fraction(1, 16) Offset((1, 4)) Fraction(1, 8) Offset((3, 8)) Fraction(1, 16) Offset((1, 2)) Fraction(1, 8) Offset((5, 8)) Fraction(1, 16) Offset((3, 4)) Fraction(1, 8) Offset((7, 8)) Fraction(1, 16) Offset((1, 1)) Fraction(3, 16) """ assert _math.is_positive_integer_power_of_two(denominator // self.denominator) inventory = list(self.depthwise_offset_inventory) for offset_tuple in inventory: assert isinstance(offset_tuple, tuple) assert all(isinstance(_, _duration.Offset) for _ in offset_tuple) old_flag_count = _duration.Duration(1, self.denominator).flag_count new_flag_count = _duration.Duration(1, denominator).flag_count extra_depth = new_flag_count - old_flag_count assert isinstance(extra_depth, int), repr(extra_depth) for _ in range(extra_depth): old_offsets = inventory[-1] new_offsets = [] for first_offset, second_offset in _sequence.nwise(old_offsets): new_offsets.append(first_offset) new_offsets.append((first_offset + second_offset) / 2) new_offsets.append(old_offsets[-1]) inventory.append(tuple(new_offsets)) total = 0 offset_to_weight = {} for offset_tuple in inventory: for offset in offset_tuple: if offset not in offset_to_weight: offset_to_weight[offset] = fractions.Fraction(0) offset_to_weight[offset] += fractions.Fraction(1) total += 1 for offset, count in offset_to_weight.items(): offset_to_weight[offset] = fractions.Fraction(count, total) return MetricAccentKernel(offset_to_weight)
[docs] def rewrite( self, components: typing.Sequence[_score.Component], *, boundary_depth: int | None = None, initial_offset: _duration.Offset = _duration.Offset(0), maximum_dot_count: int | None = None, rewrite_tuplets: bool = True, ) -> None: r""" Rewrites ``components`` according to ``meter``. .. container:: example Rewrites the contents of a measure in a staff using the default meter for that measure's time signature: >>> lily_string = "| 2/4 c'2 ~ |" >>> lily_string += "| 4/4 c'32 d'2.. ~ d'16 e'32 ~ |" >>> lily_string += "| 2/4 e'2 |" >>> container = abjad.parsers.reduced.parse_reduced_ly_syntax(lily_string) >>> staff = abjad.Staff() >>> staff[:] = container >>> score = abjad.Score([staff], name="Score") >>> abjad.show(staff) # doctest: +SKIP .. docs:: >>> string = abjad.lilypond(staff) >>> print(string) \new Staff { { \time 2/4 c'2 ~ } { \time 4/4 c'32 d'2.. ~ d'16 e'32 ~ } { \time 2/4 e'2 } } >>> rtc = abjad.meter.make_best_guess_rtc((4, 4)) >>> meter = abjad.Meter(rtc) >>> print(meter.pretty_rtm_format) (4/4 ( 1/4 1/4 1/4 1/4)) >>> meter.rewrite(staff[1][:]) >>> abjad.show(staff) # doctest: +SKIP .. docs:: >>> string = abjad.lilypond(staff) >>> print(string) \new Staff { { \time 2/4 c'2 ~ } { \time 4/4 c'32 d'8.. ~ d'2 ~ d'8.. e'32 ~ } { \time 2/4 e'2 } } .. container:: example Rewrites the contents of a measure in a staff using a custom meter: >>> container = abjad.parsers.reduced.parse_reduced_ly_syntax(lily_string) >>> staff = abjad.Staff() >>> staff[:] = container >>> score = abjad.Score([staff], name="Score") >>> abjad.show(staff) # doctest: +SKIP .. docs:: >>> string = abjad.lilypond(staff) >>> print(string) \new Staff { { \time 2/4 c'2 ~ } { \time 4/4 c'32 d'2.. ~ d'16 e'32 ~ } { \time 2/4 e'2 } } >>> string = '(4/4 ((2/4 (1/4 1/4)) (2/4 (1/4 1/4))))' >>> rtc = abjad.rhythmtrees.parse(string)[0] >>> meter = abjad.Meter(rtc) >>> print(meter.pretty_rtm_format) # doctest: +SKIP (4/4 ( (2/4 ( 1/4 1/4)) (2/4 ( 1/4 1/4)))) >>> meter.rewrite(staff[1][:]) >>> abjad.show(staff) # doctest: +SKIP .. docs:: >>> string = abjad.lilypond(staff) >>> print(string) \new Staff { { \time 2/4 c'2 ~ } { \time 4/4 c'32 d'4... ~ d'4... e'32 ~ } { \time 2/4 e'2 } } .. container:: example Limit the maximum number of dots per leaf using ``maximum_dot_count``: >>> lily_string = "| 3/4 c'32 d'8 e'8 fs'4... |" >>> container = abjad.parsers.reduced.parse_reduced_ly_syntax(lily_string) >>> staff = abjad.Staff() >>> staff.append(container) >>> score = abjad.Score([staff], name="Score") >>> abjad.show(staff) # doctest: +SKIP .. docs:: >>> string = abjad.lilypond(staff) >>> print(string) \new Staff { { \time 3/4 c'32 d'8 e'8 fs'4... } } Without constraining the ``maximum_dot_count``: >>> measure = staff[0] >>> time_signature = abjad.get.indicator(measure[0], abjad.TimeSignature) >>> rtc = abjad.meter.make_best_guess_rtc(time_signature.pair) >>> meter = abjad.Meter(rtc) >>> meter.rewrite(measure[:]) >>> abjad.show(staff) # doctest: +SKIP .. docs:: >>> string = abjad.lilypond(staff) >>> print(string) \new Staff { { \time 3/4 c'32 d'16. ~ d'32 e'16. ~ e'32 fs'4... } } Constraining the ``maximum_dot_count`` to 2: >>> lily_string = "| 3/4 c'32 d'8 e'8 fs'4... |" >>> container = abjad.parsers.reduced.parse_reduced_ly_syntax(lily_string) >>> staff = abjad.Staff() >>> staff.append(container) >>> score = abjad.Score([staff], name="Score") >>> measure = staff[0] >>> time_signature = abjad.get.indicator(measure[0], abjad.TimeSignature) >>> rtc = abjad.meter.make_best_guess_rtc(time_signature.pair) >>> meter = abjad.Meter(rtc) >>> meter.rewrite(measure[:], maximum_dot_count=2) >>> abjad.show(staff) # doctest: +SKIP .. docs:: >>> string = abjad.lilypond(staff) >>> print(string) \new Staff { { \time 3/4 c'32 d'16. ~ d'32 e'16. ~ e'32 fs'8.. ~ fs'4 } } Constraining the ``maximum_dot_count`` to 1: >>> lily_string = "| 3/4 c'32 d'8 e'8 fs'4... |" >>> container = abjad.parsers.reduced.parse_reduced_ly_syntax(lily_string) >>> staff = abjad.Staff() >>> staff.append(container) >>> score = abjad.Score([staff], name="Score") >>> measure = staff[0] >>> time_signature = abjad.get.indicator(measure[0], abjad.TimeSignature) >>> rtc = abjad.meter.make_best_guess_rtc(time_signature.pair) >>> meter = abjad.Meter(rtc) >>> meter.rewrite(measure[:], maximum_dot_count=1) >>> abjad.show(staff) # doctest: +SKIP .. docs:: >>> string = abjad.lilypond(staff) >>> print(string) \new Staff { { \time 3/4 c'32 d'16. ~ d'32 e'16. ~ e'32 fs'16. ~ fs'8 ~ fs'4 } } Constraining the ``maximum_dot_count`` to 0: >>> lily_string = "| 3/4 c'32 d'8 e'8 fs'4... |" >>> container = abjad.parsers.reduced.parse_reduced_ly_syntax(lily_string) >>> staff = abjad.Staff() >>> staff.append(container) >>> score = abjad.Score([staff], name="Score") >>> measure = staff[0] >>> time_signature = abjad.get.indicator(measure[0], abjad.TimeSignature) >>> rtc = abjad.meter.make_best_guess_rtc(time_signature.pair) >>> meter = abjad.Meter(rtc) >>> meter.rewrite(measure[:], maximum_dot_count=0) >>> abjad.show(staff) # doctest: +SKIP .. docs:: >>> string = abjad.lilypond(staff) >>> print(string) \new Staff { { \time 3/4 c'32 d'16 ~ d'32 ~ d'32 e'16 ~ e'32 ~ e'32 fs'16 ~ fs'32 ~ fs'8 ~ fs'4 } } .. container:: example Split logical ties at different depths of the ``Meter``, if those logical ties cross any offsets at that depth, but do not also both begin and end at any of those offsets. Consider the default meter for ``9/8``: >>> rtc = abjad.meter.make_best_guess_rtc((9, 8)) >>> meter = abjad.Meter(rtc) >>> print(meter.pretty_rtm_format) (9/8 ( (3/8 ( 1/8 1/8 1/8)) (3/8 ( 1/8 1/8 1/8)) (3/8 ( 1/8 1/8 1/8)))) We can establish that meter without specifying a ``boundary_depth``: >>> lily_string = "| 9/8 c'2 d'2 e'8 |" >>> container = abjad.parsers.reduced.parse_reduced_ly_syntax(lily_string) >>> staff = abjad.Staff() >>> staff.append(container) >>> score = abjad.Score([staff], name="Score") >>> abjad.show(staff) # doctest: +SKIP .. docs:: >>> string = abjad.lilypond(staff) >>> print(string) \new Staff { { \time 9/8 c'2 d'2 e'8 } } >>> measure = staff[0] >>> time_signature = abjad.get.indicator(measure[0], abjad.TimeSignature) >>> rtc = abjad.meter.make_best_guess_rtc(time_signature.pair) >>> meter = abjad.Meter(rtc) >>> meter.rewrite(measure[:]) >>> abjad.show(staff) # doctest: +SKIP .. docs:: >>> string = abjad.lilypond(staff) >>> print(string) \new Staff { { \time 9/8 c'2 d'4 ~ d'4 e'8 } } With a ``boundary_depth`` of 1 logical ties which cross any offsets created by nodes with a depth of 1 in this Meter's rhythm tree -- i.e. 0/8, 3/8, 6/8 and 9/8 -- which do not also begin and end at any of those offsets, will be split: >>> lily_string = "| 9/8 c'2 d'2 e'8 |" >>> container = abjad.parsers.reduced.parse_reduced_ly_syntax(lily_string) >>> staff = abjad.Staff() >>> staff.append(container) >>> score = abjad.Score([staff], name="Score") >>> measure = staff[0] >>> time_signature = abjad.get.indicator(measure[0], abjad.TimeSignature) >>> rtc = abjad.meter.make_best_guess_rtc(time_signature.pair) >>> meter = abjad.Meter(rtc) >>> meter.rewrite(measure[:], boundary_depth=1) >>> abjad.show(staff) # doctest: +SKIP .. docs:: >>> string = abjad.lilypond(staff) >>> print(string) \new Staff { { \time 9/8 c'4. ~ c'8 d'4 ~ d'4 e'8 } } For this ``9/8`` meter, and this input notation, a ``boundary_depth`` of 2 causes no change, as all logical ties already align to multiples of 1/8: >>> lily_string = "| 9/8 c'2 d'2 e'8 |" >>> container = abjad.parsers.reduced.parse_reduced_ly_syntax(lily_string) >>> staff = abjad.Staff() >>> staff.append(container) >>> score = abjad.Score([staff], name="Score") >>> measure = staff[0] >>> time_signature = abjad.get.indicator(measure[0], abjad.TimeSignature) >>> rtc = abjad.meter.make_best_guess_rtc(time_signature.pair) >>> meter = abjad.Meter(rtc) >>> meter.rewrite(measure[:], boundary_depth=2) >>> abjad.show(staff) # doctest: +SKIP .. docs:: >>> string = abjad.lilypond(staff) >>> print(string) \new Staff { { \time 9/8 c'2 d'4 ~ d'4 e'8 } } .. container:: example Comparison of ``3/4`` and ``6/8`` at ``boundary_depths`` of 0 and 1: >>> triple = "| 3/4 2 4 || 3/4 4 2 || 3/4 4. 4. |" >>> triple += "| 3/4 2 ~ 8 8 || 3/4 8 8 ~ 2 |" >>> container = abjad.parsers.reduced.parse_reduced_ly_syntax(triple) >>> staff_1 = abjad.Staff() >>> staff_1[:] = container >>> duples = "| 6/8 2 4 || 6/8 4 2 || 6/8 4. 4. |" >>> duples += "| 6/8 2 ~ 8 8 || 6/8 8 8 ~ 2 |" >>> container = abjad.parsers.reduced.parse_reduced_ly_syntax(duples) >>> staff_2 = abjad.Staff() >>> staff_2[:] = container >>> score = abjad.Score([staff_1, staff_2]) In order to see the different time signatures on each staff, we need to move some engravers from the Score context to the Staff context: >>> engravers = [ ... 'Timing_translator', ... 'Time_signature_engraver', ... 'Default_bar_line_engraver', ... ] >>> score.remove_commands.extend(engravers) >>> score[0].consists_commands.extend(engravers) >>> score[1].consists_commands.extend(engravers) >>> abjad.show(score) # doctest: +SKIP .. docs:: >>> string = abjad.lilypond(score) >>> print(string) \new Score \with { \remove Timing_translator \remove Time_signature_engraver \remove Default_bar_line_engraver } << \new Staff \with { \consists Timing_translator \consists Time_signature_engraver \consists Default_bar_line_engraver } { { \time 3/4 c'2 c'4 } { \time 3/4 c'4 c'2 } { \time 3/4 c'4. c'4. } { \time 3/4 c'2 ~ c'8 c'8 } { \time 3/4 c'8 c'8 ~ c'2 } } \new Staff \with { \consists Timing_translator \consists Time_signature_engraver \consists Default_bar_line_engraver } { { \time 6/8 c'2 c'4 } { \time 6/8 c'4 c'2 } { \time 6/8 c'4. c'4. } { \time 6/8 c'2 ~ c'8 c'8 } { \time 6/8 c'8 c'8 ~ c'2 } } >> Here we establish a meter without specifying any boundary depth: >>> for staff in score: ... for container in staff: ... leaf = abjad.get.leaf(container, 0) ... time_signature = abjad.get.indicator(leaf, abjad.TimeSignature) ... rtc = abjad.meter.make_best_guess_rtc(time_signature.pair) ... meter = abjad.Meter(rtc) ... meter.rewrite(container[:]) ... >>> abjad.show(score) # doctest: +SKIP .. docs:: >>> string = abjad.lilypond(score) >>> print(string) \new Score \with { \remove Timing_translator \remove Time_signature_engraver \remove Default_bar_line_engraver } << \new Staff \with { \consists Timing_translator \consists Time_signature_engraver \consists Default_bar_line_engraver } { { \time 3/4 c'2 c'4 } { \time 3/4 c'4 c'2 } { \time 3/4 c'4. c'4. } { \time 3/4 c'2 ~ c'8 c'8 } { \time 3/4 c'8 c'8 ~ c'2 } } \new Staff \with { \consists Timing_translator \consists Time_signature_engraver \consists Default_bar_line_engraver } { { \time 6/8 c'2 c'4 } { \time 6/8 c'4 c'2 } { \time 6/8 c'4. c'4. } { \time 6/8 c'4. ~ c'4 c'8 } { \time 6/8 c'8 c'4 ~ c'4. } } >> Here we reestablish meter at a boundary depth of 1: >>> for staff in score: ... for container in staff: ... leaf = abjad.get.leaf(container, 0) ... time_signature = abjad.get.indicator(leaf, abjad.TimeSignature) ... rtc = abjad.meter.make_best_guess_rtc(time_signature.pair) ... meter = abjad.Meter(rtc) ... meter.rewrite(container[:], boundary_depth=1) ... >>> abjad.show(score) # doctest: +SKIP .. docs:: >>> string = abjad.lilypond(score) >>> print(string) \new Score \with { \remove Timing_translator \remove Time_signature_engraver \remove Default_bar_line_engraver } << \new Staff \with { \consists Timing_translator \consists Time_signature_engraver \consists Default_bar_line_engraver } { { \time 3/4 c'2 c'4 } { \time 3/4 c'4 c'2 } { \time 3/4 c'4 ~ c'8 c'8 ~ c'4 } { \time 3/4 c'2 ~ c'8 c'8 } { \time 3/4 c'8 c'8 ~ c'2 } } \new Staff \with { \consists Timing_translator \consists Time_signature_engraver \consists Default_bar_line_engraver } { { \time 6/8 c'4. ~ c'8 c'4 } { \time 6/8 c'4 c'8 ~ c'4. } { \time 6/8 c'4. c'4. } { \time 6/8 c'4. ~ c'4 c'8 } { \time 6/8 c'8 c'4 ~ c'4. } } >> Note that the two time signatures are much more clearly disambiguated above. .. container:: example Establishing meter recursively in measures with nested tuplets: >>> lily_string = "| 4/4 c'16 ~ c'4 d'8. ~ " >>> lily_string += "2/3 { d'8. ~ 3/5 { d'16 e'8. f'16 ~ } } " >>> lily_string += "f'4 |" >>> container = abjad.parsers.reduced.parse_reduced_ly_syntax(lily_string) >>> staff = abjad.Staff() >>> staff.append(container) >>> score = abjad.Score([staff], name="Score") >>> abjad.show(staff) # doctest: +SKIP .. docs:: >>> string = abjad.lilypond(staff) >>> print(string) \new Staff { { \time 4/4 c'16 ~ c'4 d'8. ~ \tuplet 3/2 { d'8. ~ \tweak text #tuplet-number::calc-fraction-text \tuplet 5/3 { d'16 e'8. f'16 ~ } } f'4 } } When establishing a meter on a selection of components which contain containers, like tuplets or containers, ``abjad.Meter.rewrite()`` will recurse into those containers, treating them as measures whose time signature is derived from the preprolated duration of the container's contents: >>> measure = staff[0] >>> time_signature = abjad.get.indicator(measure[0], abjad.TimeSignature) >>> rtc = abjad.meter.make_best_guess_rtc(time_signature.pair) >>> meter = abjad.Meter(rtc) >>> meter.rewrite(measure[:], boundary_depth=1) >>> abjad.show(staff) # doctest: +SKIP .. docs:: >>> string = abjad.lilypond(staff) >>> print(string) \new Staff { { \time 4/4 c'4 ~ c'16 d'8. ~ \tuplet 3/2 { d'8 ~ d'16 ~ \tweak text #tuplet-number::calc-fraction-text \tuplet 5/3 { d'16 e'8 ~ e'16 f'16 ~ } } f'4 } } .. container:: example Default rewrite behavior doesn't subdivide the first note in this measure because the first note in the measure starts at the beginning of a level-0 beat in meter: >>> staff = abjad.Staff("c'4.. c'16 ~ c'4") >>> score = abjad.Score([staff], name="Score") >>> abjad.attach(abjad.TimeSignature((6, 8)), staff[0]) >>> rtc = abjad.meter.make_best_guess_rtc((6, 8)) >>> meter = abjad.Meter(rtc) >>> meter.rewrite(staff[:]) >>> abjad.show(staff) # doctest: +SKIP .. docs:: >>> string = abjad.lilypond(staff) >>> print(string) \new Staff { \time 6/8 c'4.. c'16 ~ c'4 } Setting boundary depth to 1 subdivides the first note in this measure: >>> staff = abjad.Staff("c'4.. c'16 ~ c'4") >>> score = abjad.Score([staff], name="Score") >>> abjad.attach(abjad.TimeSignature((6, 8)), staff[0]) >>> rtc = abjad.meter.make_best_guess_rtc((6, 8)) >>> meter = abjad.Meter(rtc) >>> meter.rewrite(staff[:], boundary_depth=1) >>> abjad.show(staff) # doctest: +SKIP .. docs:: >>> string = abjad.lilypond(staff) >>> print(string) \new Staff { \time 6/8 c'4. ~ c'16 c'16 ~ c'4 } .. container:: example Rewrites notes and tuplets: >>> lily_string = r"c'8 ~ c'8 ~ c'8 \times 6/7 { c'4. r16 }" >>> lily_string += r" \times 6/7 { r16 c'4. } c'8 ~ c'8 ~ c'8" >>> staff = abjad.Staff(lily_string) >>> score = abjad.Score([staff], name="Score") >>> abjad.attach(abjad.TimeSignature((6, 4)), staff[0]) >>> abjad.show(staff) # doctest: +SKIP .. docs:: >>> string = abjad.lilypond(staff) >>> print(string) \new Staff { \time 6/4 c'8 ~ c'8 ~ c'8 \tweak text #tuplet-number::calc-fraction-text \tuplet 7/6 { c'4. r16 } \tweak text #tuplet-number::calc-fraction-text \tuplet 7/6 { r16 c'4. } c'8 ~ c'8 ~ c'8 } >>> rtc = abjad.meter.make_best_guess_rtc((6, 4)) >>> meter = abjad.Meter(rtc) >>> meter.rewrite(staff[:], boundary_depth=1) >>> abjad.show(staff) # doctest: +SKIP .. docs:: >>> string = abjad.lilypond(staff) >>> print(string) \new Staff { \time 6/4 c'4. \tweak text #tuplet-number::calc-fraction-text \tuplet 7/6 { c'8. ~ c'8 ~ c'16 r16 } \tweak text #tuplet-number::calc-fraction-text \tuplet 7/6 { r16 c'8 ~ c'4 } c'4. } The tied note rewriting is good while the tuplet rewriting could use some adjustment. Rewrites notes but not tuplets: >>> lily_string = r"c'8 ~ c'8 ~ c'8 \times 6/7 { c'4. r16 }" >>> lily_string += r" \times 6/7 { r16 c'4. } c'8 ~ c'8 ~ c'8" >>> staff = abjad.Staff(lily_string) >>> score = abjad.Score([staff], name="Score") >>> abjad.attach(abjad.TimeSignature((6, 4)), staff[0]) >>> abjad.show(staff) # doctest: +SKIP .. docs:: >>> string = abjad.lilypond(staff) >>> print(string) \new Staff { \time 6/4 c'8 ~ c'8 ~ c'8 \tweak text #tuplet-number::calc-fraction-text \tuplet 7/6 { c'4. r16 } \tweak text #tuplet-number::calc-fraction-text \tuplet 7/6 { r16 c'4. } c'8 ~ c'8 ~ c'8 } >>> rtc = abjad.meter.make_best_guess_rtc((6, 4)) >>> meter = abjad.Meter(rtc) >>> meter.rewrite( ... staff[:], ... boundary_depth=1, ... rewrite_tuplets=False, ... ) >>> abjad.show(staff) # doctest: +SKIP .. docs:: >>> string = abjad.lilypond(staff) >>> print(string) \new Staff { \time 6/4 c'4. \tweak text #tuplet-number::calc-fraction-text \tuplet 7/6 { c'4. r16 } \tweak text #tuplet-number::calc-fraction-text \tuplet 7/6 { r16 c'4. } c'4. } """ assert all(isinstance(_, _score.Component) for _ in components) if boundary_depth is not None: assert isinstance(boundary_depth, int) assert isinstance(initial_offset, _duration.Offset), repr(initial_offset) if maximum_dot_count is not None: assert isinstance(maximum_dot_count, int) assert 0 <= maximum_dot_count assert isinstance(rewrite_tuplets, bool) def recurse( logical_tie: _select.LogicalTie, boundary_depth: int | None = None, boundary_offsets=(), depth: int = 0, ) -> None: assert isinstance(logical_tie, _select.LogicalTie), repr(logical_tie) assert isinstance(boundary_offsets, tuple), repr(boundary_offsets) offsets = _get_offsets_at_depth(depth, offset_inventory) durations = [_._get_preprolated_duration() for _ in logical_tie] logical_tie_duration = sum(durations) logical_tie_timespan = _getlib._get_timespan(logical_tie) logical_tie_start_offset = logical_tie_timespan.start_offset logical_tie_stop_offset = logical_tie_timespan.stop_offset logical_tie_starts_in_offsets = logical_tie_start_offset in offsets logical_tie_stops_in_offsets = logical_tie_stop_offset in offsets if not _is_acceptable_logical_tie( logical_tie_duration=logical_tie_duration, logical_tie_starts_in_offsets=logical_tie_starts_in_offsets, logical_tie_stops_in_offsets=logical_tie_stops_in_offsets, maximum_dot_count=maximum_dot_count, ): split_offset = None offsets = _get_offsets_at_depth(depth, offset_inventory) # if the logical tie's start aligns, take the latest possible offset if logical_tie_starts_in_offsets: offsets = tuple(reversed(offsets)) for offset in offsets: if logical_tie_start_offset < offset < logical_tie_stop_offset: split_offset = offset break if split_offset is not None: split_offset -= logical_tie_start_offset shards = _mutate.split(logical_tie[:], [split_offset]) logical_ties = [_select.LogicalTie(_) for _ in shards] for logical_tie in logical_ties: recurse( logical_tie, boundary_depth=boundary_depth, boundary_offsets=boundary_offsets, depth=depth, ) else: recurse( logical_tie, boundary_depth=boundary_depth, boundary_offsets=boundary_offsets, depth=depth + 1, ) elif _is_boundary_crossing_logical_tie( logical_tie_start_offset, logical_tie_stop_offset, boundary_depth=boundary_depth, boundary_offsets=boundary_offsets, ): offsets = boundary_offsets if logical_tie_start_offset in boundary_offsets: offsets = tuple(reversed(boundary_offsets)) split_offset = None for offset in offsets: if logical_tie_start_offset < offset < logical_tie_stop_offset: split_offset = offset break assert split_offset is not None split_offset -= logical_tie_start_offset shards = _mutate.split(logical_tie[:], [split_offset]) logical_ties = [_select.LogicalTie(shard) for shard in shards] for logical_tie in logical_ties: recurse( logical_tie, boundary_depth=boundary_depth, boundary_offsets=boundary_offsets, depth=depth, ) else: _mutate._fuse(logical_tie[:]) nongrace_components = [] for component in components: if not isinstance(component, _score.IndependentAfterGraceContainer): nongrace_components.append(component) first_start_offset = nongrace_components[0]._get_timespan().start_offset last_start_offset = nongrace_components[-1]._get_timespan().start_offset difference = last_start_offset - first_start_offset + initial_offset assert difference < self.implied_time_signature.duration # build offset inventory, adjusted for initial offset and prolation first_offset = components[0]._get_timespan().start_offset first_offset -= initial_offset if components[0]._parent is None: prolation = fractions.Fraction(1) else: parentage = _parentage.Parentage(components[0]._parent) prolation = parentage.prolation offset_inventory = [] for offsets in self.depthwise_offset_inventory: offsets = [(_ * prolation) + first_offset for _ in offsets] offset_inventory.append(tuple(offsets)) # build boundary offset inventory, if applicable if boundary_depth is not None: boundary_offsets = offset_inventory[boundary_depth] else: boundary_offsets = () # cache results of iterator; we'll be mutating the underlying collection iterator = _iterate_rewrite_inputs(components) items = tuple(iterator) for item in items: if isinstance(item, _select.LogicalTie): recurse( item, boundary_depth=boundary_depth, boundary_offsets=boundary_offsets, depth=0, ) elif isinstance(item, _score.Tuplet) and not rewrite_tuplets: pass else: duration = sum([_._get_preprolated_duration() for _ in item]) if duration.numerator == 1: denominator = 4 * duration.denominator pair = _duration.with_denominator(duration, denominator) else: pair = duration.pair rtc_ = make_best_guess_rtc(pair) sub_metrical_hierarchy = Meter(rtc_) sub_boundary_depth: int | None = 1 if boundary_depth is None: sub_boundary_depth = None sub_metrical_hierarchy.rewrite( item[:], boundary_depth=sub_boundary_depth, maximum_dot_count=maximum_dot_count, )
def _get_offsets_at_depth( depth, offset_inventory: list[tuple[_duration.Offset, ...]] ) -> tuple[_duration.Offset, ...]: assert all(isinstance(_, tuple) for _ in offset_inventory) if depth < len(offset_inventory): return offset_inventory[depth] while len(offset_inventory) <= depth: new_offsets = [] old_offsets = offset_inventory[-1] for first, second in _sequence.nwise(old_offsets): new_offsets.append(first) difference = second - first half = (first + second) / 2 if _duration.Duration(1, 8) < difference: new_offsets.append(half) else: one_quarter = (first + half) / 2 three_quarters = (half + second) / 2 new_offsets.append(one_quarter) new_offsets.append(half) new_offsets.append(three_quarters) new_offsets.append(old_offsets[-1]) offset_inventory.append(tuple(new_offsets)) result = offset_inventory[depth] assert isinstance(result, tuple) assert all(isinstance(_, _duration.Offset) for _ in result), repr(result) return result def _is_acceptable_logical_tie( logical_tie_duration: _duration.Duration, logical_tie_starts_in_offsets: bool = False, logical_tie_stops_in_offsets: bool = False, maximum_dot_count: int | None = None, ) -> bool: assert isinstance(logical_tie_duration, _duration.Duration) assert isinstance(logical_tie_starts_in_offsets, bool) assert isinstance(logical_tie_stops_in_offsets, bool) if not logical_tie_duration.is_assignable: return False if ( maximum_dot_count is not None and maximum_dot_count < logical_tie_duration.dot_count ): return False if not logical_tie_starts_in_offsets and not logical_tie_stops_in_offsets: return False return True def _is_boundary_crossing_logical_tie( logical_tie_start_offset: _duration.Offset, logical_tie_stop_offset: _duration.Offset, boundary_depth: int | None = None, boundary_offsets: tuple[_duration.Offset, ...] = (), ) -> bool: assert isinstance(logical_tie_start_offset, _duration.Offset) assert isinstance(logical_tie_stop_offset, _duration.Offset) if boundary_depth is None: return False if not any( logical_tie_start_offset < _ < logical_tie_stop_offset for _ in boundary_offsets ): return False if ( logical_tie_start_offset in boundary_offsets and logical_tie_stop_offset in boundary_offsets ): return False return True def _iterate_rewrite_inputs( argument: typing.Sequence[_score.Component], ) -> typing.Iterator[_select.LogicalTie | _score.Container]: r""" Iterates topmost masked logical ties, rest groups and containers in ``argument``, masked by ``argument``. .. container:: example >>> string = "! 2/4 c'4 d'4 ~ !" >>> string += "! 4/4 d'8. r16 r8. e'16 ~ " >>> string += "2/3 { e'8 ~ e'8 f'8 ~ } f'4 ~ !" >>> string += "! 4/4 f'8 g'8 ~ g'4 a'4 ~ a'8 b'8 ~ !" >>> string += "! 2/4 b'4 c''4 !" >>> string = string.replace('!', '|') >>> container = abjad.parsers.reduced.parse_reduced_ly_syntax(string) >>> staff = abjad.Staff() >>> score = abjad.Score([staff], name="Score") >>> staff[:] = container .. docs:: >>> string = abjad.lilypond(staff) >>> print(string) \new Staff { { \time 2/4 c'4 d'4 ~ } { \time 4/4 d'8. r16 r8. e'16 ~ \tuplet 3/2 { e'8 ~ e'8 f'8 ~ } f'4 ~ } { \time 4/4 f'8 g'8 ~ g'4 a'4 ~ a'8 b'8 ~ } { \time 2/4 b'4 c''4 } } >>> for x in abjad.meter._iterate_rewrite_inputs(staff[0]): ... x ... LogicalTie(items=[Note("c'4")]) LogicalTie(items=[Note("d'4")]) >>> for x in abjad.meter._iterate_rewrite_inputs(staff[1]): ... x ... LogicalTie(items=[Note("d'8.")]) LogicalTie(items=[Rest('r16'), Rest('r8.')]) LogicalTie(items=[Note("e'16")]) Tuplet('3:2', "e'8 e'8 f'8") LogicalTie(items=[Note("f'4")]) >>> for x in abjad.meter._iterate_rewrite_inputs(staff[2]): ... x ... LogicalTie(items=[Note("f'8")]) LogicalTie(items=[Note("g'8"), Note("g'4")]) LogicalTie(items=[Note("a'4"), Note("a'8")]) LogicalTie(items=[Note("b'8")]) >>> for x in abjad.meter._iterate_rewrite_inputs(staff[3]): ... x ... LogicalTie(items=[Note("b'4")]) LogicalTie(items=[Note("c''4")]) """ last_tie = None current_leaf_group: list[_score.Leaf] | None = None current_leaf_group_is_silent = False for component in argument: assert isinstance(component, _score.Component) if isinstance(component, _score.Note | _score.Chord): this_tie_leaves = _iterlib._get_logical_tie_leaves(component) this_tie = _select.LogicalTie(this_tie_leaves) if current_leaf_group is None: current_leaf_group = [] elif ( current_leaf_group_is_silent or this_tie is None or last_tie != this_tie ): yield _select.LogicalTie(current_leaf_group) current_leaf_group = [] current_leaf_group_is_silent = False current_leaf_group.append(component) last_tie = this_tie elif isinstance(component, _score.Rest | _score.Skip): if current_leaf_group is None: current_leaf_group = [] elif not current_leaf_group_is_silent: yield _select.LogicalTie(current_leaf_group) current_leaf_group = [] current_leaf_group_is_silent = True current_leaf_group.append(component) last_tie = None elif isinstance(component, _score.Container): if current_leaf_group is not None: yield _select.LogicalTie(current_leaf_group) current_leaf_group = None last_tie = None yield component else: raise Exception(f"unhandled component: {component!r}.") if current_leaf_group is not None: yield _select.LogicalTie(current_leaf_group)
[docs] def illustrate_meter_list( meter_list: list["Meter"], denominator: int = 16, range_: tuple | None = None, scale: float = 1.0, ) -> _lilypondfile.LilyPondFile: r""" Illustrates meters. .. container:: example The PNG image that would be rendered below fails to draw vertical lines in Postscript. But the output renders correctly as a PDF. To see the effect of this function, paste the excerpt below into a test file and call LilyPond on that test file: >>> pairs = [(3, 4), (5, 16), (7, 8)] >>> rtcs = [abjad.meter.make_best_guess_rtc(_) for _ in pairs] >>> meters = [abjad.Meter(_) for _ in rtcs] >>> lilypond_file = abjad.meter.illustrate_meter_list(meters, scale=0.5) .. docs:: >>> lilypond_file = abjad.meter.illustrate_meter_list(meters) >>> markup = lilypond_file.items[0] >>> string = abjad.lilypond(markup) >>> print(string) \markup \column { \combine \combine \translate #'(1.0 . 1) \sans \fontsize #-3 \center-align \fraction 3 4 \translate #'(49.38709677419355 . 1) \sans \fontsize #-3 \center-align \fraction 5 16 \translate #'(69.54838709677419 . 1) \sans \fontsize #-3 \center-align \fraction 7 8 \combine \postscript #" 0.2 setlinewidth 1 0.5 moveto 49.38709677419355 0.5 lineto stroke 1 1.25 moveto 1 -0.25 lineto stroke 49.38709677419355 1.25 moveto 49.38709677419355 -0.25 lineto stroke 49.38709677419355 0.5 moveto 69.54838709677419 0.5 lineto stroke 49.38709677419355 1.25 moveto 49.38709677419355 -0.25 lineto stroke 69.54838709677419 1.25 moveto 69.54838709677419 -0.25 lineto stroke 69.54838709677419 0.5 moveto 126 0.5 lineto stroke 69.54838709677419 1.25 moveto 69.54838709677419 -0.25 lineto stroke 126 1.25 moveto 126 -0.25 lineto stroke " \postscript #" 1 -2 moveto 0 -6.153846153846154 rlineto stroke 5.032258064516129 -2 moveto 0 -1.5384615384615385 rlineto stroke 9.064516129032258 -2 moveto 0 -3.076923076923077 rlineto stroke 13.096774193548388 -2 moveto 0 -1.5384615384615385 rlineto stroke 17.129032258064516 -2 moveto 0 -4.615384615384616 rlineto stroke 21.161290322580644 -2 moveto 0 -1.5384615384615385 rlineto stroke 25.193548387096776 -2 moveto 0 -3.076923076923077 rlineto stroke 29.225806451612904 -2 moveto 0 -1.5384615384615385 rlineto stroke 33.25806451612903 -2 moveto 0 -4.615384615384616 rlineto stroke 37.29032258064516 -2 moveto 0 -1.5384615384615385 rlineto stroke 41.32258064516129 -2 moveto 0 -3.076923076923077 rlineto stroke 45.354838709677416 -2 moveto 0 -1.5384615384615385 rlineto stroke 49.38709677419355 -2 moveto 0 -6.153846153846154 rlineto stroke 49.38709677419355 -2 moveto 0 -10.909090909090908 rlineto stroke 53.41935483870968 -2 moveto 0 -3.6363636363636367 rlineto stroke 57.45161290322581 -2 moveto 0 -3.6363636363636367 rlineto stroke 61.483870967741936 -2 moveto 0 -7.272727272727273 rlineto stroke 65.51612903225806 -2 moveto 0 -3.6363636363636367 rlineto stroke 69.54838709677419 -2 moveto 0 -10.909090909090908 rlineto stroke 69.54838709677419 -2 moveto 0 -5.517241379310345 rlineto stroke 73.58064516129032 -2 moveto 0 -1.3793103448275863 rlineto stroke 77.61290322580645 -2 moveto 0 -2.7586206896551726 rlineto stroke 81.64516129032258 -2 moveto 0 -1.3793103448275863 rlineto stroke 85.6774193548387 -2 moveto 0 -2.7586206896551726 rlineto stroke 89.70967741935483 -2 moveto 0 -1.3793103448275863 rlineto stroke 93.74193548387096 -2 moveto 0 -4.137931034482759 rlineto stroke 97.7741935483871 -2 moveto 0 -1.3793103448275863 rlineto stroke 101.80645161290323 -2 moveto 0 -2.7586206896551726 rlineto stroke 105.83870967741936 -2 moveto 0 -1.3793103448275863 rlineto stroke 109.87096774193549 -2 moveto 0 -4.137931034482759 rlineto stroke 113.90322580645162 -2 moveto 0 -1.3793103448275863 rlineto stroke 117.93548387096774 -2 moveto 0 -2.7586206896551726 rlineto stroke 121.96774193548387 -2 moveto 0 -1.3793103448275863 rlineto stroke 126 -2 moveto 0 -5.517241379310345 rlineto stroke " } """ assert all(isinstance(_, Meter) for _ in meter_list), repr(meter_list) assert isinstance(denominator, int), repr(denominator) if range_ is not None: assert isinstance(range_, tuple), repr(range_) assert isinstance(scale, float), repr(scale) durations = [_.duration for _ in meter_list] total_duration = sum(durations) offsets = _math.cumulative_sums(durations, start=0) timespans = _timespan.TimespanList() for one, two in _sequence.nwise(offsets): timespan = _timespan.Timespan(start_offset=one, stop_offset=two) timespans.append(timespan) if range_ is not None: minimum, maximum = range_ else: minimum, maximum = 0, total_duration minimum = float(_duration.Offset(minimum)) maximum = float(_duration.Offset(maximum)) if scale is None: scale = 1.0 assert 0 < scale postscript_scale = 125.0 / (maximum - minimum) postscript_scale *= float(scale) postscript_x_offset = (minimum * postscript_scale) - 1 timespan_markup = _timespan._make_timespan_list_markup( timespans, postscript_x_offset, postscript_scale, draw_offsets=False, ) postscript_strings = [] rational_x_offset = _duration.Offset(0) for meter in meter_list: kernel_denominator = denominator or meter.denominator kernel = MetricAccentKernel.from_meter(meter, kernel_denominator) for offset, weight in sorted(kernel.kernel.items()): assert isinstance(weight, fractions.Fraction) weight_as_float = float(weight) * -40 ps_x_offset = float(rational_x_offset + offset) ps_x_offset *= postscript_scale ps_x_offset += 1 postscript_strings.append(f"{_timespan._fpa(ps_x_offset)} -2 moveto") postscript_strings.append(f"0 {_timespan._fpa(weight_as_float)} rlineto") postscript_strings.append("stroke") rational_x_offset += meter.duration fraction_pairs = [] for meter, offset in zip(meter_list, offsets): numerator, denominator = meter.numerator, meter.denominator x_translation = float(offset) * postscript_scale x_translation -= postscript_x_offset top_string = rf"\translate #'({x_translation} . 1)" bottom_string = r"\sans \fontsize #-3 \center-align" bottom_string = bottom_string + rf" \fraction {numerator} {denominator}" pair = (top_string, bottom_string) fraction_pairs.append(pair) fraction_strings = [] fraction_strings.append(fraction_pairs[0][0]) fraction_strings.append(fraction_pairs[0][1]) for pair in fraction_pairs[1:]: fraction_strings.insert(0, r"\combine") fraction_strings.append(pair[0]) fraction_strings.append(pair[1]) strings = [] strings.append(r"\markup") strings.append(r"\column") strings.append("{") strings.extend(fraction_strings) strings.append(r"\combine") strings.append(timespan_markup.string) strings.append(r"\postscript") strings.append('#"') strings.extend(postscript_strings) strings.append('"') strings.append("}") string = "\n".join(strings) markup = _indicators.Markup(string) lilypond_file = _lilypondfile.LilyPondFile() lilypond_file.items.append(markup) return lilypond_file
[docs] class MetricAccentKernel: """ Metric accent kernel. .. container:: example >>> rtc = abjad.meter.make_best_guess_rtc((7, 8)) >>> hierarchy = abjad.Meter(rtc) >>> kernel = hierarchy.generate_offset_kernel_to_denominator(8) >>> for offset, weight in kernel.kernel.items(): ... print(f"{offset!r}: {weight!r}") Offset((0, 1)): Fraction(3, 14) Offset((7, 8)): Fraction(3, 14) Offset((3, 8)): Fraction(1, 7) Offset((5, 8)): Fraction(1, 7) Offset((1, 8)): Fraction(1, 14) Offset((1, 4)): Fraction(1, 14) Offset((1, 2)): Fraction(1, 14) Offset((3, 4)): Fraction(1, 14) Call the kernel against an expression from which offsets can be counted to receive an impulse-response: .. container:: example >>> pairs = [(0, 8), (1, 8), (1, 8), (3, 8)] >>> offsets = [abjad.Offset(_) for _ in pairs] >>> offset_counter = abjad.OffsetCounter(offsets) >>> kernel(offset_counter) Fraction(1, 2) """ ### CLASS VARIABLES ### __slots__ = ("_kernel", "_offsets") ### INITIALIZER ### def __init__(self, kernel: dict | None = None): kernel = kernel or {} assert isinstance(kernel, dict) for key, value in kernel.items(): assert isinstance(key, _duration.Offset) assert isinstance(value, fractions.Fraction) self._kernel = kernel.copy() offsets = tuple(sorted(self._kernel)) self._offsets = offsets ### SPECIAL METHODS ###
[docs] def __call__(self, offset_counter: _timespan.OffsetCounter) -> fractions.Fraction: r""" Calls metric accent kernal on ``offset_counter``. .. container:: example >>> upper_staff = abjad.Staff("c'8 d'4. e'8 f'4.") >>> lower_staff = abjad.Staff(r"\clef bass c4 b,4 a,2") >>> score = abjad.Score([upper_staff, lower_staff]) >>> abjad.show(score) # doctest: +SKIP .. docs:: >>> string = abjad.lilypond(score) >>> print(string) \new Score << \new Staff { c'8 d'4. e'8 f'4. } \new Staff { \clef "bass" c4 b,4 a,2 } >> >>> rtc = abjad.meter.make_best_guess_rtc((4, 4)) >>> meter = abjad.Meter(rtc) >>> kernel = abjad.MetricAccentKernel.from_meter(meter) >>> offset_counter = abjad.OffsetCounter(score) >>> kernel(offset_counter) Fraction(10, 33) """ assert isinstance(offset_counter, _timespan.OffsetCounter), repr(offset_counter) response = fractions.Fraction(0, 1) for offset, count in offset_counter.items.items(): if offset in self._kernel: weight = self._kernel[offset] weighted_count = weight * count response += weighted_count assert isinstance(response, fractions.Fraction), repr(response) return response
[docs] def __eq__(self, argument) -> bool: """ Is true when ``argument`` is a metric accent kernal with a kernal equal to that of ``self``. """ if isinstance(argument, type(self)): if self.kernel == argument.kernel: if self.duration == argument.duration: return True return False
[docs] def __hash__(self) -> int: """ Hashes metric accent kernel. """ return super().__hash__()
[docs] def __repr__(self) -> str: """ Gets repr. """ return f"{type(self).__name__}(kernel={self.kernel})"
### PUBLIC PROPERTIES ### @property def duration(self) -> _duration.Duration: """ Gets duration. """ if self._offsets: return _duration.Duration(self._offsets[-1]) else: return _duration.Duration(0) @property def kernel(self) -> dict[_duration.Offset, fractions.Fraction]: """ The kernel dictionary. """ return self._kernel.copy() ### PUBLIC METHODS ###
[docs] @staticmethod def from_meter(meter: Meter, denominator: int = 32) -> "MetricAccentKernel": """ Create a metric accent kernel from ``meter``. """ assert isinstance(meter, Meter), repr(meter) assert isinstance(denominator, int), repr(denominator) return meter.generate_offset_kernel_to_denominator(denominator=denominator)
class _MeterFittingSession: """ Meter-fitting session. Used internally by ``Meter.fit_meters()``. """ ### CLASS VARIABLES ### __slots__ = ( "_cached_offset_counters", "_kernel_denominator", "_kernels", "_longest_kernel", "_maximum_run_length", "_meters", "_offset_counter", "_ordered_offsets", ) KernelScore = collections.namedtuple("KernelScore", ("kernel", "score")) ### INITIALIZER ### def __init__( self, kernel_denominator: int = 32, maximum_run_length: int | None = None, meters: typing.Sequence[Meter] = (), offset_counter: _timespan.OffsetCounter = _timespan.OffsetCounter(), ) -> None: assert isinstance(kernel_denominator, int), repr(kernel_denominator) if maximum_run_length is not None: assert isinstance(maximum_run_length, int), repr(maximum_run_length) assert 0 < maximum_run_length assert all(isinstance(_, Meter) for _ in meters), repr(meters) assert isinstance(offset_counter, _timespan.OffsetCounter), repr(offset_counter) assert isinstance(offset_counter, _timespan.OffsetCounter), repr(offset_counter) self._cached_offset_counters: dict = {} self._maximum_run_length = maximum_run_length self._meters = tuple(meters) self._offset_counter = offset_counter self._ordered_offsets = tuple(sorted(self.offset_counter.items)) self._kernel_denominator = kernel_denominator self._kernels = {} for meter in self._meters: kernel = meter.generate_offset_kernel_to_denominator( self._kernel_denominator ) self._kernels[kernel] = meter mak = sorted(self._kernels, key=lambda _: _.duration)[-1] assert isinstance(mak, MetricAccentKernel), repr(mak) self._longest_kernel = mak ### SPECIAL METHODS ### def __call__(self) -> list[Meter]: """ Fits meters. """ selected_kernels: list[MetricAccentKernel] = [] current_offset = _duration.Offset(0) while current_offset < self.ordered_offsets[-1]: kernel_scores: list[_MeterFittingSession.KernelScore] = [] kernels = self._get_kernels(selected_kernels) offset_counter = self._get_offset_counter_at(current_offset) assert isinstance(offset_counter, _timespan.OffsetCounter), repr( offset_counter ) if not offset_counter: winning_kernel = self.longest_kernel assert isinstance(winning_kernel, MetricAccentKernel) if selected_kernels: winning_kernel = selected_kernels[-1] assert isinstance(winning_kernel, MetricAccentKernel) else: for kernel in kernels: if ( self.maximum_run_length and 1 < len(kernels) and self.maximum_run_length <= len(selected_kernels) ): last_n_kernels = selected_kernels[-self.maximum_run_length :] if len(set(last_n_kernels)) == 1: if kernel == last_n_kernels[-1]: continue initial_score = kernel(offset_counter) lookahead_score = self._get_lookahead_score( current_offset, kernel, kernels ) score = initial_score + lookahead_score kernel_score = self.KernelScore(kernel=kernel, score=score) kernel_scores.append(kernel_score) kernel_scores.sort(key=lambda kernel_score: kernel_score.score) winning_kernel = kernel_scores[-1].kernel assert isinstance(winning_kernel, MetricAccentKernel) selected_kernels.append(winning_kernel) current_offset += winning_kernel.duration selected_meters = [self.kernels[_] for _ in selected_kernels] assert all(isinstance(_, Meter) for _ in selected_meters), repr(selected_meters) return selected_meters ### PRIVATE METHODS ### def _get_kernels(self, selected_kernels): return tuple(self.kernels) def _get_lookahead_score(self, current_offset, kernel, kernels): lookahead_scores = [] lookahead_offset = current_offset + kernel.duration lookahead_offset_counter = self._get_offset_counter_at(lookahead_offset) for lookahead_kernel in kernels: lookahead_scores.append(lookahead_kernel(lookahead_offset_counter)) lookahead_score = sum(lookahead_scores) return lookahead_score def _get_offset_counter_at(self, start_offset) -> _timespan.OffsetCounter: if start_offset in self.cached_offset_counters: return _timespan.OffsetCounter(self.cached_offset_counters[start_offset]) offset_to_weight: dict[_duration.Offset, fractions.Fraction] = {} assert self.longest_kernel is not None stop_offset = start_offset + self.longest_kernel.duration index = bisect.bisect_left(self.ordered_offsets, start_offset) if index == len(self.ordered_offsets): return _timespan.OffsetCounter(offset_to_weight) offset = self.ordered_offsets[index] while offset <= stop_offset: count = self.offset_counter.items[offset] offset_to_weight[offset - start_offset] = count index += 1 if index == len(self.ordered_offsets): break offset = self.ordered_offsets[index] self.cached_offset_counters[start_offset] = offset_to_weight offset_counter = _timespan.OffsetCounter(offset_to_weight) return offset_counter ### PUBLIC PROPERTIES ### @property def cached_offset_counters(self) -> dict: """ Gets cached offset counters """ return self._cached_offset_counters @property def kernel_denominator(self) -> int: """ Gets kernel denominator. """ return self._kernel_denominator @property def kernels(self) -> dict: """ Gets kernels-to-meter dictionary. """ return self._kernels @property def longest_kernel(self) -> MetricAccentKernel: """ Gets longest kernel. """ return self._longest_kernel @property def maximum_run_length(self) -> int | None: """ Gets maximum meter repetitions. """ return self._maximum_run_length @property def meters(self) -> tuple[Meter, ...]: """ Gets meters. """ return self._meters @property def offset_counter(self) -> _timespan.OffsetCounter: """ Gets offset counter. """ return self._offset_counter @property def ordered_offsets(self) -> tuple[_duration.Offset, ...]: """ Gets ordered offsets. """ return self._ordered_offsets
[docs] def make_best_guess_rtc( pair: tuple[int, int], *, increase_monotonic: bool = False ) -> _rhythmtrees.RhythmTreeContainer: """ Makes best-guess rhythm-tree container. Prime divisions greater than 3 are converted to sequences of 2, 3 and 4 summing to that prime. Summands are arranged from greatest to least by default. This means that 5 becomes 3+2 and 7 becomes 3+2+2 in the examples below. .. container:: example >>> rtc = abjad.meter.make_best_guess_rtc((2, 4)) >>> print(rtc.pretty_rtm_format) (2/4 ( 1/4 1/4)) >>> rtc = abjad.meter.make_best_guess_rtc((3, 4)) >>> print(rtc.pretty_rtm_format) (3/4 ( 1/4 1/4 1/4)) >>> rtc = abjad.meter.make_best_guess_rtc((4, 4)) >>> print(rtc.pretty_rtm_format) (4/4 ( 1/4 1/4 1/4 1/4)) >>> rtc = abjad.meter.make_best_guess_rtc((5, 4)) >>> print(rtc.pretty_rtm_format) (5/4 ( (3/4 ( 1/4 1/4 1/4)) (2/4 ( 1/4 1/4)))) >>> rtc = abjad.meter.make_best_guess_rtc((5, 4), increase_monotonic=True) >>> print(rtc.pretty_rtm_format) (5/4 ( (2/4 ( 1/4 1/4)) (3/4 ( 1/4 1/4 1/4)))) >>> rtc = abjad.meter.make_best_guess_rtc((6, 4)) >>> print(rtc.pretty_rtm_format) (6/4 ( (3/4 ( 1/4 1/4 1/4)) (3/4 ( 1/4 1/4 1/4)))) >>> rtc = abjad.meter.make_best_guess_rtc((7, 4)) >>> print(rtc.pretty_rtm_format) (7/4 ( (3/4 ( 1/4 1/4 1/4)) (2/4 ( 1/4 1/4)) (2/4 ( 1/4 1/4)))) >>> rtc = abjad.meter.make_best_guess_rtc((7, 4), increase_monotonic=True) >>> print(rtc.pretty_rtm_format) (7/4 ( (2/4 ( 1/4 1/4)) (2/4 ( 1/4 1/4)) (3/4 ( 1/4 1/4 1/4)))) >>> rtc = abjad.meter.make_best_guess_rtc((8, 4)) >>> print(rtc.pretty_rtm_format) (8/4 ( (2/4 ( 1/4 1/4)) (2/4 ( 1/4 1/4)) (2/4 ( 1/4 1/4)) (2/4 ( 1/4 1/4)))) >>> rtc = abjad.meter.make_best_guess_rtc((9, 4)) >>> print(rtc.pretty_rtm_format) (9/4 ( (3/4 ( 1/4 1/4 1/4)) (3/4 ( 1/4 1/4 1/4)) (3/4 ( 1/4 1/4 1/4)))) .. container:: example >>> rtc = abjad.meter.make_best_guess_rtc((2, 8)) >>> print(rtc.pretty_rtm_format) (2/8 ( 1/8 1/8)) >>> rtc = abjad.meter.make_best_guess_rtc((3, 8)) >>> print(rtc.pretty_rtm_format) (3/8 ( 1/8 1/8 1/8)) >>> rtc = abjad.meter.make_best_guess_rtc((4, 8)) >>> print(rtc.pretty_rtm_format) (4/8 ( 1/8 1/8 1/8 1/8)) >>> rtc = abjad.meter.make_best_guess_rtc((5, 8)) >>> print(rtc.pretty_rtm_format) (5/8 ( (3/8 ( 1/8 1/8 1/8)) (2/8 ( 1/8 1/8)))) >>> rtc = abjad.meter.make_best_guess_rtc((5, 8), increase_monotonic=True) >>> print(rtc.pretty_rtm_format) (5/8 ( (2/8 ( 1/8 1/8)) (3/8 ( 1/8 1/8 1/8)))) >>> rtc = abjad.meter.make_best_guess_rtc((6, 8)) >>> print(rtc.pretty_rtm_format) (6/8 ( (3/8 ( 1/8 1/8 1/8)) (3/8 ( 1/8 1/8 1/8)))) >>> rtc = abjad.meter.make_best_guess_rtc((7, 8)) >>> print(rtc.pretty_rtm_format) (7/8 ( (3/8 ( 1/8 1/8 1/8)) (2/8 ( 1/8 1/8)) (2/8 ( 1/8 1/8)))) >>> rtc = abjad.meter.make_best_guess_rtc((7, 8), increase_monotonic=True) >>> print(rtc.pretty_rtm_format) (7/8 ( (2/8 ( 1/8 1/8)) (2/8 ( 1/8 1/8)) (3/8 ( 1/8 1/8 1/8)))) >>> rtc = abjad.meter.make_best_guess_rtc((8, 8)) >>> print(rtc.pretty_rtm_format) (8/8 ( (2/8 ( 1/8 1/8)) (2/8 ( 1/8 1/8)) (2/8 ( 1/8 1/8)) (2/8 ( 1/8 1/8)))) >>> rtc = abjad.meter.make_best_guess_rtc((9, 8)) >>> print(rtc.pretty_rtm_format) (9/8 ( (3/8 ( 1/8 1/8 1/8)) (3/8 ( 1/8 1/8 1/8)) (3/8 ( 1/8 1/8 1/8)))) >>> rtc = abjad.meter.make_best_guess_rtc((12, 8)) >>> print(rtc.pretty_rtm_format) (12/8 ( (3/8 ( 1/8 1/8 1/8)) (3/8 ( 1/8 1/8 1/8)) (3/8 ( 1/8 1/8 1/8)) (3/8 ( 1/8 1/8 1/8)))) """ assert isinstance(pair, tuple), repr(pair) assert all(isinstance(_, int) for _ in pair), repr(pair) assert isinstance(increase_monotonic, bool), repr(increase_monotonic) rtc = _rhythmtrees.RhythmTreeContainer(pair) numerator, denominator = pair numerator_factors = _math.factors(numerator) if 1 < len(numerator_factors) and numerator_factors[0] == numerator_factors[1] == 2: numerator_factors[0:2] = [4] def recurse( rtc: _rhythmtrees.RhythmTreeContainer, factors: typing.Sequence[int], denominator: int, *, increase_monotonic: bool = False, ) -> None: assert isinstance(rtc, _rhythmtrees.RhythmTreeContainer) assert all(isinstance(_, int) for _ in factors) assert isinstance(denominator, int) assert isinstance(increase_monotonic, bool) if factors: factor, factors = factors[0], factors[1:] pair = _duration.divide_pair(rtc.pair, factor) if factor in (2, 3, 4): if factors: for _ in range(factor): rtc_ = _rhythmtrees.RhythmTreeContainer(pair) rtc.append(rtc_) recurse( rtc_, factors, denominator, increase_monotonic=increase_monotonic, ) else: for _ in range(factor): pair_ = (1, denominator) rtl = _rhythmtrees.RhythmTreeLeaf(pair_) rtc.append(rtl) else: parts = [3] total = 3 while total < factor: if not increase_monotonic: parts.append(2) else: parts.insert(0, 2) total += 2 for part in parts: assert isinstance(part, int) pair_ = (part * pair[0], pair[1]) grouping = _rhythmtrees.RhythmTreeContainer(pair_) if factors: for _ in range(part): rtc_ = _rhythmtrees.RhythmTreeContainer(pair) grouping.append(rtc_) recurse( rtc_, factors, denominator, increase_monotonic=increase_monotonic, ) else: for _ in range(part): pair_ = (1, denominator) rtl = _rhythmtrees.RhythmTreeLeaf(pair_) grouping.append(rtl) rtc.append(grouping) else: pair_ = (1, denominator) for _ in range(rtc.pair[0]): rtl = _rhythmtrees.RhythmTreeLeaf(pair_) rtc.append(rtl) recurse( rtc, numerator_factors, denominator, increase_monotonic=increase_monotonic, ) return rtc